DOCUMENT RESUME ED 053 946 24 SE 012 152 AUTHOR Pfeiffer, Carl H. TITLE Homeostatic Systems -- Mechanisms for Survival. Science IV. INSTITUTION Monona Grove High School, Monona, Wis.; Wisconsin State Dept. of Education, Madison. SPONS AGENCY Office of Education (DHEW), Washington, D.C. Bureau of Research. BUREAU NO BR-5-0646 PUB DATE NOTE 362p.; Due to copyright restrictions, some pages are not included EDRS PRICE DESCRIPTORS EDRS Price MF-\$0.65 HC-\$13.16 Biology, Chemistry, *Fused Curriculum, *Instructional Materials, *Integrated Curriculum, *Interdisciplinary Approach, Physics, *Science Activities, Scientific Principles, Secondary School Science #### ABSTRACT The two student notebooks in this set provide the basic outline and assignments for the fourth and last year of a senior high school unified science program which builds on the technical third year course, Science IIIA (see SE 012 149). An introductory section considers the problems of survival inherent in living systems, matter-energy interactions relating to living systems, life and the laws of thermodynamics, and homeostasis. The first unit, Matter-Energy Relationships of the Electron, focuses on interactions involving circular movement, translational movement, and movements between electric and magnetic fields. The second unit, Mechanisms for Matter-Energy Interactions in Living Organisms, considers those mechanisms associated with the capture, storage and utilization of energy and matter, transport, regulation and exchange of matter, and other functions in living organisms. The materials for each of the sub-units include: a list of required and recommended readings from various other books; questions for consideration in introducing a lesson; a brief background reading; a basic outline of the lectures with space provided within the outline for notes; laboratory activities and investigations; laboratory problem reports and other kinds of assignments (discussion questions, fill-ins, problems); and summary statements and review questions. Numerous diagrams and illustrations are included. (PR) FA-24 BR-5-0646 Carl H. Pfeiffer Wisconsin State Department of Education 5 = # UNIFYING THEMES MONONA GROVE UNIFIED SCIENCE PROGRAM ERIC" ### INTRODUCTION #### I. Class Procedures and Regulations #### A. Grouping - 1. Large Groups (50-55 Students) Rooms -- 67, 61 - 2. Laboratory Groups (24 Students) Rooms -- 61, 73, and 69 - 3. Small Groups (15-18 Students) Rooms -- 61, 73, 69, 67, 65 and other available rooms When groups move from one room to another during a class session, the movement is expected to be accomplished quickly and quietly. # B. Personal Responsibility in the Classroom - 1. When the bell signaling the beginning of a class session sounds, students are expected to come to order without further direction. Students not in their assigned seats at this time are considered to be tardy. - 2. Students reporting to class late must present an "admit to class" pass. - 3. The class will be dismissed by the teacher, not the bell, at the end of the class session. - 4. Students detained by the teacher after the bell should obtain an admit to class pass before leaving the room. #### 5. Before leaving the classroom! - a. Check your desk including the shelf and floor area to be sure that they are cleared of debris and in order. - b. Place your chair under the desk. - 6. The science department office located between rooms 61 and 65, is not to be used as a passage way by students. #### C. Note Taking - 1. The student notebook provides a basic outline of the course content. - 2. Regular, careful, note taking in large group sessions is required in order to make the student notebook a useful reference for study. - 3. An audio tape on effective note taking is available in the Resource Center. - 4. Notebooks will be collected periodically to evaluate the quality of note taking. #### D. Assignments - 1. Assignment schedules will be given periodically. These schedules should be used to help budget time for homework and study for quiz sessions and hour examinations. - 2. Types of homework assignments - a. Reference reading: - (1) Reading assignments will be made from selected references located in the Resource Center. - (2) Generally the required reading assignments will also be available on audio tape. - (3) "Check tests", one or two questions, will frequently follow a reading assignment. - b. Problems, exercises and discussion questions: - Duplicate copies of all problem assignments, exercises and discussion questions appear in the notebook. Carbon copies are handed in for evaluation. - c. Laboratory reports to be completed on special laboratory report forms. - 3. Regulations pertaining to homework assignments - a. On days when assignment is due at the beginning of the class session homework will be collected when the bell rings. - (1) Problems, exercises or discussion questions missing after the collection of homework will be recorded as an F and be reflected in the Individual Performance Grade. - (2) When excused absence is a factor the F may be converted to full credit provided that the assignment is completed within a specified period. - (3) Laboratory reports missing at the time of collection will be graded F in Knowledge and Skills and affect the Individual Performance Grade. - (4) If excused absence is not a factor, late laboratory reports may be submitted for a maximum of ½ credit in Knowledge and Skills. - b. Students absent from class are responsible for arrangements to complete assignments missed. - (1) Assignments not handed in the day after returning to class will be graded as F, except in cases where requests for an extension of time have been approved. - Arrangements for making up a scheduled quiz or an hour examination must be completed the day the student returns to class. Any quiz or hour exam not made up will be averaged as F in the Knowledge and Skills Grade. - II. Science Resource Center - A. Use of the Resource Center Facilities | SCIENCE RESOURCE CENTER NAME: | | | | |--------------------------------|-------|-----|--------------------| | DATE OF USE: | | | | | PERIOD OF USE: | | | | | STUDY HALL ROOM NO.: | | | | | SCIENCE COURSE NO.: | - | | NO. | | ACTIVITY PLANNED: | | | i | | | | ă i | COURSE | | SCIENCE DEPT. | | | DATE OF
SCIENCE | | APPROVAL | MAME: | 134 | S S | - 1. The Resource Center may be used during any regularly scheduled study hall period by the "pass" system. - 2. The Resource Center will be open from 12:15 to 12:45 every Tuesday, Wednesday, and Thursday noon. - 3. Students wishing to use the Resource Center Facilities before or after school may do so by appointment. - 4. Students must demonstrate the degree of self discipline necessary for effective independent or cooperative study in the Resource Center. - B. Circulation of Resource Center Reference Materials - 1. No materials will be checked out during the school day. - 2. Books, magazines, offprints, and special materials may be checked out on an "overnight" basis only. Check out period is from 3:45 to 4:00 p.m. daily. - 3. All materials must be returned by 8:00 a.m. the next day. - 4. Failure to comply with any of the above procedures will be reflected in the Citizenship Grade. - 1. Print your name on the card. - 2. Punch out the correct information on the shaded (red) area. - D. Guide to Student Use of the Science Resource Center - 1. The Science Resource Center is designed and equipped to provide an opportunity for students to do independent or cooperative study in the area of science. - 2. Students who come to the Resource Center must have a specific purpose which requires the use of the facilities in the Center! - 3. Students who use the Resource Center Facilities must record the nature of their activity in the Center by use of the Porta-Punch Card. - 4. All cooperative study between two students must be done at the conference tables. Students sitting at the study carrels are expected to work individually without any conversation with other students. - 5. All students are encouraged to take advantage of the opportunities that the Resource Center provides for individual help with any problems or difficulties experienced in their science course. - 6. The use of the Resource Center Facilities requires self discipline on the part of the student in order to develop effective individual study skills. Students who are unable to exercise the self discipline required to maintain an atmosphere conducive to independent study will not be permitted to use the Resource Center Facilities until such time that they can demonstrate this ability. - 7. Maintenance Responsibilities - a. Turn volume off when headsets are not in use. - b. Leave all reference books on the carrel shelf in good order. All cataloged books and periodicals are to be returned to the proper space in the drawers or shelves. - c. Keep desk storage area free of debris and desk surfaces clean. # III. Grades and grading A. Basis for the evaluation of Individual Performance and School Citizenship: *See accompanying sheets or student handbook for points considered in grading these categories. Individual Performance and School Citizenship will be evaluated three times each quarter. - B. Basis for the evaluation of student progress in the area of Knowledge and Skills: - 1. The grade point system | 4.0
3.9 4.3 A+
3.8 | 3.1
3.0 3.3 B+ | 2.4
2.3 2.3 C+
2.2 | 1.5
1.4 1.3 D+ | .8
.7
.6 .3 F+ | |--------------------------|-------------------|--------------------------|-------------------|----------------------| | | 2.9 | | 1.3 | . 5 | | 3.7 | 2.8 3.0 B | 2.1 | 1.2 1.0 0 | | | 3.6 4.0 A | 2.7 | 2.0 2.0 C | 1.1 | . 4 | | 3.5 | | 1.9 | | .3 .0 F
.1 | | | 2.6 2.7 2 | | 1.0 | .1 .0 F | | 3.4 | 2.6
2.5 2.7 B- | 1.8 | 1.0
.9 .7 D | . 0 | | 3.3 3 .7 A- | | 1.7 1.7 C- | | | | 3.2 | | 1.6 | | | | | | | | | 2. Determination of grade point Daily Work - 12 of Knowledge and Skills Grade - Quizzes a.
short 5 minute unannounces rest covering material presented in large group sessions or homework assignments - .b. 15-30 minute announced rose Written laboratory problem and investigation reports Hour Examinations - ½ of Knowledge and Skills Grade Daily work and hour examinations not completed will be averaged as zero. - C. Final Total Growth Grade - 1. Each of the four, quarterly, total growth grades plus the Final Evaluation are averaged equally to give the final Total Growth Grade in the course. - 2. Final Evaluation - a. The final written examination in the course will count as one-half of the Final Evaluation. - b. A final appraisal of Individual Performance and School Citizenship will determine the remaining half of the Final Evaluation Grade. #### FACTORS DEFINING INDIVIDUAL PERFORMANCE #### Works up to ability - 1. Does work which compares favorably with ability as measured by test scores. - 2. Does daily work which compares favorably with best work done in a grading period. - 3. Tries to make the best use of his particular talents and opportunities. - 4. Carefully completes each day's assignment. - 5. Reworks and corrects errors in assignments after class checking. - 6. Goes beyond regular assignments to learn more about the subject. - 7. Spends time reviewing. - 8. Shows improvement rather than staying at one point. #### Has a positive attitude - 1. Has a sincere desire and interest in learning. - 2. Is willing to try is willing to be exposed to new information and ideas. - 3. Has respect for the opinions of others. - 4. Accepts correction well and constantly tries to improve. - 5. Takes pride in his work. - 6. Responds as well to group instruction as to individual instruction. - 7. Does not argue over trivial points. - 8. Does not show negative feelings in class straightens things out alone with teacher. - 9. Is willing to accept special jobs. #### Shows self-direction - 1. Demonstrates ability to carry on independent or cooperative study using Resource Center materials. - 2. Works for understanding rather than a grade. - 3. Is self-starting and self-sustaining. - 4. Does his own work has confidence in it. - 5. Tries assignments himself before seeking help. - 6. Knows when and how to seek help. - 7. Initiates makeup assignments and does them promptly. - 8. Is resourceful- uses imagination. - 9. Settles down to work immediately. - 10. Shows initiative. #### Plans work wisely - 1. Completes assignments and turns them in on time. - 2. Is prepared for class brings all necessary materials. - 3. Makes good use of study time. - 4. Follows directions. - 5. Anticipates needs in work projects. - 6. Organizes time so there is no last minute rush job. - 7. Moves quickly and quietly when given an assignment. #### FACTORS DEFINING SCHOOL CITIZENSHIP ## Is courteous and considerate of others - 1. Is courteous to other students, to teachers or any person with whom he comes in contact, for example the custodial staff. - 2. Is quiet and attentive in class discussion. - 3. Listens carefully to student questions, answers and comments as well as to those of the teacher. - 4. Uses only constructive criticism avoids ridicule. - 5. Is tolerant of errors made by others. - 6. Receives recognition before speaking. - 7. Is ready to begin work when the bell rings. - 8. Accepts the "spirit" as well as the letter of school regulations. - 9. Shows halllway conduct which is orderly and in good taste. - 10. Shows good assembly conduct. - 11. Is quiet and attentive during P.A. announcements. - 12. Is quiet in hallways when school is in session. - 13. Carries out classroom activity in a quiet and businesslike manner. #### Is responsible - 1. Demonstrates self discipline necessary for effective use of Resource Center Facilities. - 2. Keeps appointments. - 3. Carries out assigned tasks. - 4. Can be left unsupervised for a period of time. - 5. Gets to class on time. - 6. Meets obligations, fees, etc. - 7. Returns borrowed items. - 8. Has a good attendance record. - 9. Keeps name off library list. - 10. Presents excuse for absence. - 11. Returns report card on time. #### Contributes his share - 1. Works to develop and uphold the good reputation of the school. - 2. Participates in class discussion in a constructive manner asks questions as well as volunteering information shares ideas. - 3. Participates in at least one school activity as a cooperative, contributing member. - 4. Accepts jobs such as taking part in panels, putting up bulletin boards, helping direct class activities, getting information. - 5. Brings examples, clippings, supplementary materials to class. - 6. Contributes to success of class in a physical way straightens chairs, pulls blinds, etc. #### Is a good leader or follower - 1. Cooperates willingly with the majority even though his point of view is with the minority. - 2. Works constructively to change practices he is not in agreement with. - 3. Works willingly with any group, not just his particular friends. - 4. Helps class move along positively. - 5. Leads in class discussion. - 6. Responds to suggestions. - 7. Gets others to participate. - 8. Helps other students learn without simply giving them answers. - 9. Is compatible with the group or class. - 10. Avoids trying to be the center of attention. ## Takes care of school and personal property - 1. Handles and uses school equipment and materials with care. - 2. Cooperates in keeping school building and grounds cleany free from litter and in excellent condition. - 3. Is concerned about clean-up at the end of a class period. - 4. Erases pencil marks and picks up paper when others have been careless. - 5. Respects property of others. - 6. Returns materials to correct places. - 7. Avoids marking desks, books, etc. - 8. Covers text books. - 9. Disposes of gum, paper, etc., properly. - 10. Keeps locker clean. # SCIENCE IV # SCIENCE IV # INTRODUCTION PROBLEMS OF SURVIVAL INHERENT IN LIVING SYSTEMS MATTER-ENERGY INTERACTIONS RELATING TO LIVING SYSTEMS LIFE AND THE LAWS OF THERMODYNAMICS THE CONCEPT OF HOMEOSTASIS Homeostatic Systems - Mechanisms for Survival # INTRODUCTION Problems of Survival Inherent in Living Systems Matter-Energy Interactions Relating to Living Systems Life and the Laws of Thermodynamics The Concept of Homeostasis # HOMEOSTATIC SYSTEMS MECHANISMS FOR SURVIVAL #### INTRODUCTION: This course is about some of the physical and chemical laws governing the functions and activities of living organisms. These laws are simple modifications of the same laws that govern all matter. Traditionally it was once considered impossible to discover such laws - the excuse being made that living things are so complex as to evade all of our attempts to understand their functions. Consequently, quantitative analysis was strictly limited to non-living matter. As time went on, it was found that physical and chemical measurements could be made just as well on living matter, provided that the appropriate apparatus could be designed and operated to extract the appropriate data from the living matter. In other words, the basic problem in understanding the functions of living matter was, and continues to be a technological one. By analyzing the various data gathered from living matter and by considering the architecture and chemical composition of the particular cells forming the building blocks of the kind of living matter under investigation, scientists eventually were able to propose models for possible mechanisms governing the functions of living matter. As time went on, these models were refined to fit new situations and new data thus improving our understanding of the mechanisms. Today, this understanding is by no means complete - and this course cannot give you all the answers; however, by concentrating on the topics that allow points of contact to be made between physical laws and biological laws, it is hoped that you will develop your own ideas about some of the life functions and perhaps become interested in designing some models for yourselves. Reading: Part II. Baker-Allen, Matter, Energy and Life pp 3-7; pp 42-44; pp 47-52 Part III. Baker-Allen, Matter, Energy and Life pp 53-58; pp 67-71 Dull, Metcalf and Williams, Modern Physics pp 270-280 Loewy and Siekevitz, Cell Structure and Function Chapter 2, "Life and the 2nd Law of Thermodynamics". Part IV. L. L. Langley, <u>Homeostasis</u>, Preface and Chapters 1 and 2 R. W. Gerard, <u>Unresting Cells</u>, Chapt. 14, "Organism." It is recommended that every student read this ent/ire book sometime during the year. The ideas that the author presents are clarified by diagrams, illustrations, and analogies - and freed from complication by the omission of burdensome technical terms. - I. Problems of Survival Inherent in Living Systems - A. The Problem of Energy Capture and Its Transduction into Biologically Useful Forms - 1. Specialization, Division of Labor, and Adaptability of Organs of Sensation - 2. The Channeling of Bioelectrical and Biochemical Energy Along Specific Pathways - B. The Problem of Energy Storage Within the Organisms - 1. In the Form of Information - a. Memory - b. Replication - 2. In the Form of Fuel - a. Biosynthesis - b. Respiration - C. The Problem of Energy Utilization - 1. Locomotion and Mass Transport - a. Mechanical Work Done on Environment - b. Mechnical Work Done On Internal Parts - c. Transmission of Biochemical Messages via Transport Systems - d. Chemical Work Done on Internal and External Environments - 2. Biosynthesis and Respiration - 3. Active Transport - a. Osmoregulation and Excretion - b. Concentration gradients - c. Polarity and Electrical Potentials • - 4. Replication, Growth, Development, Reproduction - a. Transmission of Chemical Messages - b. Mass Migration of Cells - c. Differentiation - d. Deposition of Materials # ENERGY FLOW THROUGH LIVING SYSTEMS POTENTIAL FORMS ENERGY IN THE FORMS OF SPENT → MECHANICAL WORK-YADP + ENERGY ASSEMBLY WORK GENERAL NATURE OF CELLS OSMOTIC WORK ASSOCIATED
WITH THESE FORM OF HORK MECHANI SMS *ATP THE CELL'S BIOCHETICAL INTERMEDIATES WITHIN MECHANISMS WHICH MAKE THE ENERGY: ACTIVATED CHARGED FORMS OF THERMOCHEMICAL WORK) mitochendi:a!-MACHINERY WORK POSSIBLE CARBOHYDRATES OF ENERGY: FUELS FROM THE **ENVIRONMENT** TYPE OF WORK DONE PROTEINS-BY THE ORGANISM FATS + HEAT THERMOCHENICAL (also photoand electrochemical) 17 Mechanisms for the Capture, transducing absorptive metabolic storage Storage and Utilization of Matter and Energy Mechanisms for the Transport, regulation of their contents) Regulation and Exchange of (transport of fluids and Matter and Energy (also Hydraulic) OSMOTIC transporting secretory excretory > MECHANICAL (also osmo-and electrochemical) to act and react (the physiological Mechanisms enabling organisms basis of behavior) contractile secretory ASSOCIATED SYSTEMATIC FUNCTIONS assimilation fermentation respiration excretion ingestion digestion ionic, osmo, thermo gas exchange circulation regulation excretion secretion contraction conduction secretion excretion support conductile cell division reproduction growth ASSEWBLY (also reproductive) Mechanisms by which living matter populations) propogates itself (either cells, organisms or through space Grane. reproductive secretory ___ de____ipme__ II. Matter-Energy Interactions Relating to Living Systems A. The availability of energy for life - ultimate sources B. Life's dependence upon continuous energy flow - intermediate sources C. Various energy-requiring activities of living organisms D. The organism's dependence on energy for maintaining an internal state of orderliness # III. Life and the Laws of Thermodynamics - A. Introduction to Elementary Thermodynamics and the Concept of Entropy - 1. A Laboratory investigation of the Thermodynamics of a simple system - 2. The forms of energy - a. mechanical - b. chemical - c. electromagnetic - d. Internal Potential and Kinetic Energy - 1) lieat and temperatures - 2) Units of heat energy - 3) Specific heat - B. The Laws of Thermodynamics - 1. The first law (E = Q-W) - a. energy equivalences - b. calorimetry - 1) the quantity of heat required to change temperatures - 2) the method of mixtures - c. Hidden energy - 1) heat of fusion - 2) heat of vaporization - 2. The second law - a. Increased potential energy - b. Entropy - 1) the ratio $S = \frac{Q}{T}$ - 2) order vs. disorder Laboratory Investigation 8 # INTRODUCTION TO ELEMENTARY THERMODYNAMICS #### AND THE CONCEPT OF ENTROPY All matter can exist in three states, the solid state, the liquid state and the gaseous state. We usually associate these states to a temperature range at a constant pressure. As energy is added to a solid, work is done on that solid to change it into a liquid. The same is true for the changing of a liquid into a gas. We will qualify these ideas by putting an immersion heater into a calorimeter cup containing crushed ice. The relationship between Q, the number of calories of heat put into the calorimeter, and electric current is: $$Q = \frac{W}{I} = \frac{VIt}{I}$$ where V is voltage, I is amperage & t is time in seconds. The proportionality constant J equals 4.19 joule/calory. #### PROCEDURE: Crush 100 grams of ice into an aluminum calorimeter cup and place the immersion heater into the cup. Put a thermometer ($^{\circ}$ C) and cork into the hole in the cover. Make certain that the thermometer is sufficiently imbedded into the ice so that $T_i = 273^{\circ}$ K. Wire the immersion cup to a low voltage source in the following manner: Start the low power voltage supply at 5 volts D.C. and the time clock simultaneously. Record the temperature of the water and ice mixture every 30 seconds. Make certain that you use the plunger on the cover to keep the mixture at a homogenious temperature. As the temperature reaches 10° take readings at 5 minute (300 sec) intervals. Maintain this frequency of readings until the temperature has been at 100° C for 15 minutes. We now wish to graph the number of calories (Q) put into the calorimeter as a function of the temperature of the mixture. We see from our equation that: $$Q = \frac{VIt}{J}$$ and therefore we can calibrate the number of calories for any set number of seconds. To avoid these many calculations, we note that since our voltage, our amperage and J have remained constant for the entire experiment that we could call $\frac{VI}{J}$ another constant, say k. We can then say that 0 = kt or that $0 = \frac{VI}{J}$ is directly proportional to the time in seconds. We have as data the time in seconds so let us graph t in place of Q (they are proportional) against temperature. (t on y axis, T on x axis) The slope of the t vs T graph is an indicator of the change of entropy of our system. Do you know why this is so? ij DATA SHEET Name Science IV A Hour _______10 Date ______ Mass of ice = Voltage = V = Amperage = I = T_i of ice and water mixture = | t | Т | t | Т | t | Т | t | Т | t | Т | t | Т. | t | Т | t | Т | | |----------------------------|--|--|--|--|---
--	--	--	--
--	---	----------------------------------	
melted by its impact against the wall? - IV. The Concept of Homeostasis - A. Nature and Scope of the Concept - 1. The Term Defined - 2. Applicability to a Wider Variety of Fields - 3. Implications and Universality of the Idea - B. Historical Perspective - 1. Origin of the Idea - a. Egyptians - b. Hippocrates and the Greeks - 2. Evolvement of the Idea Through the Work of 19th Century Physiologists - a. Pfluger 1877 German Physiologist - b. Fredericq 1885 - c. Charles Richet - d. Claude Bernard 1843 French Physiologist and father of the concept in that he was the first to employ the term as a generalization and recognize its universality - e. Walter B. Cannon 1871-1945 American Physiologist and and popularizer of the concept - C. General Principles Pertaining to Homeostatic Systems and the Function of Their Component Parts - 1. Functions of Animate Control Systems as Analogous to Those of Inanimate Control Systems - a. The Science of Cybernetics - b. Feedback Mechanisms (servomechanisms) - c. Homeostatic Mechanisms - 2. Model System - a. The Steady State vs. The Unsteady State - 1. Internal Environment Maintained in a State of Near Absolute Constancy, i.e., controllable - 2. Internal Environment High Degree of Variability Enders it Virtually Uncontrollable, Except When Small Pirts of it are Isolatable within a Relatively Nosed System - b. Component Parts of the Homeostatic Control System - (1) Sensing Device responds when the variable factor being controlled falls below the predetermined value - (2) Circuit relays messages from the sensing device to the effector mechanism - (3) Effector Mechanism when activated by messages sent from sensing device, it responds in such a way as to correct for random fluctuations of the variable factor being controlled for within the internal environment D. The Organism as a Steady - State System # PERTAIN TO THE MAINTENANCE OF THE LIVING ORGANISM The living being is stable. It must be so in order not to be destroyed, dissolved, or disintegrated by the colossal forces, often adverse, which surround it. By an apparent contradiction it maintains its stability only if it is excitable and capable of modifying itself according to external stimuli and adjusting its response to the stimulation. In a sense it is stable because it is modifiable - the slight instability is the necessary condition for the true stability of the organism. Charles Richet ## SCIENCE IV - I. MATTER-ENERGY RELATIONSHIPS OF THE ELECTRON - A. Interactions Involving Circular Movement - B. Interactions Involving Translational Movement - C. Interactions Between Electric and Magnetic Fields Matter-Energy Relationships of the Electron A. Interactions Involving Circular Movement Magnetic Characteristics of Matter Forces in Magnetic Fields Magnetic Forces 4] ### Interactions Involving Circular Forces ### Resource Material Required Reading: Modern Physics, Chapter 21, p. 462-472 Recommended Reading: Basic Science Series #200-8, Chapter 1, Magnetism: A field of Force Magnets, by Francis Bitter PSSC Physics, Chapter 30, The Magnetic Field, p. 522-528 ### QUESTIONS FOR CONSIDERATION: 1. What is magnetic pole strength? What factors effect the magnitude of magnetic pole strength? Define a "unit pole". - 2. Discuss the relationship between magnetism and electric charge. How does this relationship relate to the "Domain Theory of Magnetism"? - 3. Describe a current theory to account for the earth's magnetism. - 4. What is a "line of force"? Do lines of force actually exist? Discuss some properties of lines of force. - 5. How is the law of magnetic force related to Coulomb's Law for electrostatic forces and to the Law of Universal Gravitation? - 6. Define magnetic field strength. How can one measure the magnitude of a magnetic field? What factors influence the intensity of a magnetic field? - 7. Define magnetic torque and magnetic moment. ### A. Interactions Involving Circular Motion ### MAGNETIC CHARACTERISTICS OF MATTER	1	Δ	review
paper. Draw a smooth curve through the points and indicate, by arrows, the direction of the field. In a similar way trace other lines of force until the field is clearly represented on all sides. Successive lines may be originated from any point near the permanent magnet. Continue the "mapping" until lines have been traced far enough from the magnet to show the undisturbed field of the earth. Two places should be found where the direction taken by the compass needle is indeterminate; places where the compass needle does not seem to assume any specific direction. These positions are called "neutral points", and the region in this vicinity should be mapped with great care. The field near these points is very weak and is zero at the precise point of neutrality. Do not use a pencil which is encased in metal until it has been determined that the metal does not effect the compass readings. Locate both neutral points and use the magnetic map to calculate the pole strength for the North and South pole of the magnet. Current theories of magnetism suggest that the pole strength at the North and South pole centers of a magnet must be equal. Thus, if the two neutral points are precisely located, the calculated values for the North and South pole strengths would be equal. ### ANALYSIS OF DATA AND CONCLUSION Compute the values for the North and South pole strengths of the bar magnet based on the location of the neutral points. Determine the percentage difference between these values and also the average value for the pole strength of the bar magnet. Show all vector diagrams and equations on the map which represents the resultant field. ### QUESTIONS - 1. Do lines of force represent lines of equal force; that is, does a particular line of force pass through a series of points where the magnetic field strength is constant? - 2. Explain why, within certain regions of a resultant magnetic field, a compass needle suddenly reverses its direction $180^{\rm O}$ as the compass is - . made to follow a specific line of force outward from the pole of the magnet. Interactions Involving Circular Motion ### MAGNETIC TORQUES - 10. Magnetic Torque - a. Parallel Force Field b. Non- Parallel Fields 11. Magnetic Moment	Problem Assignment	Name	
infinity. Consequently the work done in moving a charge from infinity to a point "A" near a charged body, is equal to: $\int_{\Gamma} \mathbf{r} = \mathbf{r} \cdot \mathbf{r}$ f x d; where $\mathbf{r} = \alpha \, \mathbf{Q} \cdot \mathbf{q} / \mathbf{r}^2$ and \mathbf{r} is the distance from \mathbf{Q} to "A". The equation for the work done in moving a charge from infinity to a point "A" then becomes: $$w = \alpha Qq$$ With reference to the diagram below calculate the following: - 1. The work required to bring q from infinity to: - a. point C c. point A - b. point B - 2. The work required to move q from: - a. point C to B - h. point C to A - 3. The potential difference between: - a. C and B - b. C and A - 4. On the basis of potential difference and charge, calculate the work done in moving charge q from: - a. C to B - b. C to A - 5. How is the work done in moving a charge from one point in space to another related to the path taken? - 6. A potential difference of 600 volts is applied to two parallel metal plates that are spaced 2 cm. apart. What is the electric field strength in MKS units between the plates? What force would be exerted on a charge of 10^{-8} coul. placed anywhere between the plates? Laboratory Investigation ### THE ELECTRICAL PROPERTIES OF MATTER #### INTRODUCTION: All matter is composed of fundamental particles which are electrically charged. Electric charge is an undefined physical quantity. Like time, length and force (or mass), electric charge cannot be defined but it can be experienced directly via the senses and it can be measured. It is a natural tendency for all matter to be electrically neutral, that is, to maintain an equality between the number of + protons and - electrons. However, it is possible to cause - electrons to be added to or taken away from a body and disturb the electrical equilibrium of the system. When this happens the system is said to be electrically charged. If the system has lost electrons it is positively charged, when a system gains electrons it becomes negatively charged. When a charged body is brought near an uncharged conductor a separation of charges occurs, actually a movement of electrons in the uncharged body. The displacement of electrons as a result of the influence of a charged body near, but not in physical contact with a conductor is called "electrostatic induction". If a conductor is momentarily grounded, while in the presence of a charged body a charge, opposite in sign to that of the charged body, will remain on the conductor. This process is called charging by induction. Often the foregoing phenomena are explained on the basis of the repulsion and attraction of like and unlike charges respectively. However, it is more desirable to base the explanation on the fundamental idea of "electrical potential". Electrical potential may be described as the factor which governs the flow of electrons (electricity) between two bodies, or between two points in space. No electrons can move from one point to another unless there is a difference in electrical potential, that is, a difference in the magnitude of the electric charge between the points sufficient to drive the electrons along the conductor. The electrical potential of a body depends upon a number of things: its charge, its capacity to hold a charge, and its position relative to neighboring charges. The presence of a body with a negative charge has the effect of lowering the electrical potential of all neighboring charges. The presence of a body with a positive charge raises the electrical potential of all surrounding bodies. .17 The electrical potential between any two points in space varies with the distance between the points and with the magnitude of the electric charge which resides at each point. The potential at any point within the boundaries of a spherical or cylindrical conductor is the same everywhere so long as the conductor is not actually transferring electrons. One extremely important aspect of the theory of electrical potential has to do with the earth and all matter physically attached to it. The earth is so large compared to isolated systems on its surface that it is regarded as an inexhaustable source of electrons, or a limitless "sink" into which electrons can be poured without changing its electrical potential. At the same instant that electrons are being taken from the earth at one location, electrons are being returned to the earth at some other location. The result of this type of exchange is that the electrical potential of the earth, in total, remains unchanged. One can consider the earth to be somewhat like a non-profit "world bank" for electrons. An electron exchange goes on constantly as a result of deposits and withdrawals all over the world, but the books always balance. In total, the number of electrons being withdrawn are always equal to the number being returned and consequently the potential of the earth is always zero. This idea of regarding the earth as having a constant zero potential is fundamental to our understanding of modern electrical theory. ### PURPOSE OF THE INVESTIGATION: Our purpose in this experiment is to investigate the phenomena of electric charge which are basic to an understanding of the electrical nature of matter. Specifically we will be concerned with: - a. the production and transfer of electric charge by conduction and induction methods - b. the detection and identification of electric charge by use of the gold leaf electroscope - c. the distribution and retention of charge on various types of conductors. ### PROCEDURE: Each of the investigations described should be performed two or three times and the results noted and discussed by members of the group. The experiment report will consist of diagrams which show a quantitative distribution of charge on the various conductors. Represent a neutral electroscope with three + charges and three negative - charges. Represent all charged bodies by showing an excess of one + or - charge as the case may be. When electrons move along a conductor represent the direction of the motion by use of arrows. ### PRECAUTIONS: 1. The gold leaf electroscope is a <u>very</u> sensitive instrument capable of detecting extremely small differences in electrical potential. Do not bring a highly charged body in direct contact with the instrument since a sudden excess charge will tear the gold leaves apart. While using the electroscope maintain a ground connection between the case and the earth. When you are through using the instrument, charge it slightly and replace the cap. - 2. Do not touch the knob of a Leyden Jar condenser without grounding it first. - 3. Handle all equipment carefully and with respect. No not touch the surfaces of conductors and insulators any more than is necessary.	Laboratory	Investigation	
of this part of the experiment. Transfer a small amount of charge to the electroscope by touching the proof plane to the knob of the Leyden Jar and then to the electroscope. Make a sketch showing the distribution of charge on the Leyden Jar, the proof plane, and the electroscope. 2. Connect the uncharged electroscope to the insulated hollow sphere which will serve as your "ice pail". Give the proof plane the same charge as that on the knob of the Leyden Jar and introduce it into the hollow sphere. Be careful not to make contact with the sides of the spherical conductor. Test the sign of the charge on the electroscope. Remove the plane carefully. Note the behavior of the electroscope. Illustrate the action with a sketch and describe the movement of charge in the systems. 3. Recharge the proof plane and again introduce it into the hollow conductor without making contact with its surfaces. Ground the spherical conductor. Break the ground and then remove the proof plane. Investigate the sign of the charge on the electroscope. Discharge the electroscope and the conductor. Diagram the electron motion observed. 52		1 .	
construct several electrochemical cells, examine the helf-cell reaction at each electrode, measure the potential difference between the half-cells with a voltmeter, and investigate some factors which affect the voltage of the cell. ### PROCEDURE: - 1. Prepare or obtain 200 ml of 1 M $\rm Zn(NO_3)_2$ and 200 ml of 1 M $\rm Cu(NO_3)_2$ solution. Place the solutions in separate 250 ml beakers. - 2. Construct and fill a U-tube with 1 M KNO₃ solution. Stopper both ends with a loose cotton plug. Invert the U-tube into the two beakers. The U-tube full of a conducting solution acts as a salt bridge which keeps the solutions electrically neutral by allowing ions to migrate from one beaker to the other. - 3. Place a copper strip in the copper solution and a zinc strip in the zinc solution. - 4. Obtain a 0-3 volt D.C. voltmeter with 0 at the left side. Use wires with alligator clamps to connect the electrodes to the terminals (posts) of the voltmeter. Connect the leads so that the needle deflects to the right 67 when the circuit is completed. Read the voltage of the cell and record the value in the table shown below. Look at the posts on the voltmeter to identify which is the positive and which is the negative electrode. Record this information in the table. The electrons will flow through the external circuit from the negative electrode (anode) to the positive electrode (cathode). In the table, identify the anode and cathode for each cell you test.	Cel1	Voltage	Negative electrode (anode)
-------------------	----	------------------	
\text{ CO}_2 + 24 \text{ H}$$ $\frac{18 \text{ ATP}}{-7}$ $C_6 \text{H}_{12} \text{O}_6 + 6 \text{H}_2 \text{O}_6$ Thus the overall reaction is $$6 \text{ CO}_2 + 12 \text{ H}_2\text{O} \qquad \frac{\text{light}}{\text{chloroplasts}} \qquad \text{C}_6\text{H}_12\text{O}_6 + 6 \text{ H}_2\text{O} + 6 \text{ O}_2$$ To fix one molecule of carbon dioxide in the form of carbohydrate thus requires not only 4 H atoms but also 3 "high-energy" phosphate bonds of adenosine triphosphate (ATP). It is now recognized that the energy absorbed as light by chloroplasts generates not only hydrogen, but also ATP. Indeed, isolated chloroplasts can carry out the whole process of photosynthesis. Carbohydrate, having been prepared by photosynthesis, is in turn degraded to provide all the cell's energetic needs. The two principle processes for deriving energy by the degradation of sugars are fermentation and respiration. Fermentation is the process by which cells derive energy without using oxygen, by rearranging the atoms of such an organic molecule as glucose to yield products of lower energy. Respiration is a combustion, in which glucose or other organic molecules (fats, deaminated amino acids) are burned with molecular oxygen to yield carbon dioxide, water, and energy in the form of ATP. Photosynthesis and respiration are opposed reactions. The overall equation of the former just reverses that of the latter, when glucose is consumed. Green plants respire in the dark; they simultaneously respire and photosynthesize in the light. The consumption of oxygen is a measure of their respiration; the evolution of oxygen measures their photosynthesis. In the light, with both processes going on simultaneously, the oxygen exchange represents a balance between these opposed reactions. If the light is sufficiently bright, however, photosynthesis may be so much faster than respiration as to dominate the oxygen exchange. Photosynthesis 104 # TRANSFORMATION OF ELECTROMAGNETIC RADIATION BY PLANTS - I. Nature of the Chloroplast - A. Structure of the Chloroplast B. Relationship of Structure to Function - II. Structure and Properties of the Chlorophyll Molecules - A. Types B. Molecular Structure C. Energy Capture D. Efficiency of Energy Capture ### PHOTOSYNTHESIS # I. The Pigments of the Chloroplast: Note: Rinse and lubricate the ground glass joints of the separatory funnel being used with the solvent being used in the particular separation. When the experiment is completed rinse the funnel with alcohol and drain, placing a small slip of paper in each ground glass first. # A. Extraction of the Pigments: Weigh out 0.5 grams of leaf tissue (discarding large veins). Place the tissue with a very small amount CaCO₃ (to neutralize cell acids and prevent the removal of Mg from the chlorophyll nucleus) in a clean mortar and grind to a fine pulp. Add enough 85% acetone to thin the pulp (5-6 ml.). Continue to grind the tissue for several minutes. Allowing the cell debris to settle, tilt the mortar and using an eye dropper, transfer the clear supernatant green liquid to 10 ml. of ethyl ether contained in a 250 ml. separatory funnel. Repeat the above procedure until the plant residue is white - BUT AFTER THE SECOND EXTRACTION ADD ABOUT EQUAL PARTS (3-3 ml) 100% ACETONE AND ETHYL ETHER UNTIL THE LAST EXTRACTION, WHICH SHOULD BE MADE WITH ETHYL ETHER. (This facilitates the extraction of all the pigments-both green and yellow). #### SUMMARY OF EXTRACTION PROCEDURE - 1. about 2 extractions with acetone (5-6 mls.) - 2. about 3 extractions with acctone + ethyl ether (3 ml. each) - 3. about 2 extractions with ethyl ether (5-6 mls.) The green solution in the separatory funnel is a solution of the plastid pigments together with small amounts of other compounds in a mixture of acetone and ethyl ether. The next step is to remove the acetone and any of the extraneous materials that are water soluble. To do this add about 100 ml. of distilled water to the pigment solution in the separatory funnel. ADD THE WATER SLOWLY POURING IT DOWN THE SIDE OF THE SEPRARATORY FUNNEL. ROTATE THE FUNNEL - DO NOT SHAKE - for a few minutes to speed the transfer of the acetone and other substances into the lower water layer. example Fasten the separatory funnel in an upright position. When the two layers are sharply defined, run off the lower layer and discard it. Repeat this washing with distilled water three times following the same procedure as above. (This removes all of the acetone). NOTE: Should the ether layer become very small add about 5 ml. more ether at the time of adding distilled water but do not allow the ether layer to exceed about 15 ml. When the last distilled water washing is completed - run off the ether solution of the chloroplast pigments into a small graduate. (If necessary, add ether to bring the volume to 10 ml.) Pour the pigment solution into a small bottle containing 2 grams anhydrous Na_2SO_4 . Cap the bottle and shake it so the salt is suspended in the liquid - continue the shaking for several minutes. (The anhydrous salt further removes water from the ether.) # B. Separation of the Plastid Pigments: The chloroplast pigments dissolved in ether (from part A) will be separated by the Paper Partition Chromatography method. The principle of the method is as follows: When a solution consisting of a single solute dissolved in a pure solvent is brought into contact with a second solvent which does not mix with the first solvent, the solute will tend to become distributed. between the two solvents in a definite ratio, depending upon its relative solubility in the two solvents. Therefore if a solute is dissolved in a mixture of two solvents, the difference in the affinity of the solute for the two solvents can be revealed by using some inert substance (filter paper) through which the solvents move a different rates. The solute will follow the most rapidly moving solvent rapidly or slowly according to its relative affinity for this solvent. If several solutes are contained in the solvent mixture (as they are here, since there are several chlorophylls in the ether) and if these have different affinities for the two solvents, there will be a separation of the solutes during the movement of the solvents along the strip of filter paper. Obtain the following materials: 500 ml beaker one half of petri dish large enought to cover beaker one half of small petri dish, eye dropper, preferably with a fine tip 3 10 x 80 mm, corked test tubes 135 mm, square of #1 filter paper Note: (Wash and dry hands before handling filter paper and handle this paper only between folds of paper - to prevent grease spotting or smudging.) Mark the filter paper with a lightly pencilied line parallel to and at a distance of 12 inch from one side. While holding the filter paper so that the marked edge does not contact any object, deliver a fraction of a milliliter of the plastid solution from a fine tipped cycdropper along the line on the paper. The pigment solution must be added slowly and evenly along the line since the object is to build up two pigment fronts - parallel with the pencil line and separated by a distance of one-half an inch. When the ether has evaporated from the paper, add another small portion of the ether solution. Continue to build up the pigment fronts on the strip until all of the pigment solution has been added. After allowing several minutes for the paper to become free of ether by evaporation, cut the paper strip along the pencilled line and discard the short piece. Form the piece of filter paper into a cylinder, pigment line outward and at one end, and staple each end. Place the half of the smaller petri dish in the larger. Add about 5 ml. of a 9:1 mixture of petroleum ether and henzene to the smaller petri dish. Use enough of this solvent to provide a liquid layer whose depth is equal to ½ the distance between the pigment line and the bottom of the filter paper cylinder. Immediately place the paper cylinder, pigment line down, into the solvent mixture, and invert the beaker over the cylinder and inner dish. Allow the set up to remain undisturbed until an orange band (this is a mixture of yellow carotine pigments) has advanced about 5 cm. beyond the pigments below. When this stage is reached, remove the filter paper cylinder and replace the solvent mixture with an equal amount of 4:1 mixture of petroleum ether and benzene. Reinsert the filter paper cylinder and cover the whole with the heaker as before. Allow to develop further until it is possible to identify: - 1. the blue green chlorophyll a - 2. the pure green chlorophyll b - the yellow xanthophyll (several yellow pigments) When the four pigments have separated into distinct bands remove the filter paper and allow the solvents to evaporate. - I. When the chromatogram is dry, examine the pigments as they appear on the paper. - 1. Assign an identification number to each spot or band of pitment you observe. Outline the spots (or bands) lightly in pencil. Do not use ball point or ink; it will interfere with your results for Parts II and III. - 2. Measure the diameter or width of each spot in millimeters. Also determine the R_f value, which is the ratio of the distance travelled by the pigment from its origin on the paper to the distance travelled by the solvent-front from the same origin. - 3. Record the color of each spot as it appears in white light. - 4. Examine the chromatogram under ultra violet light noting the properties of each pigment. Is the U.V. light reflected or absorbed by the pigment? Does the pigment fluoresce? Are any additional spots or bands apparent that were not so in white light? If so, record their properties on the data sheet. - II. With a scissors, cut out the pigment bands from your chromatogram and pool them with those of other class members. Be sure to keep each kind of pigment separate. Elute the pieces of paper by soaking in a few millimeters of acetone in small test tubes, using a			
separate test tube for each pigment. Leave the pieces of paper in long enough to clearly color the acetone. Examine the diluted samples, recording their color in white light and noting the quality of light reflected, transmitted, absorbed, or fluoresced. To study fluorescence, observe the sample at right angles to a narrow beam of white light while in a dark room. Examine properties of each sample when exposed to U.V. light, noting whether or not it is reflected, absorbed, or fluoresced. III. Using the spectrophotometer (see appendix for operation) obtain absorbance (optical density) readings over a range of wavelengths from 380 to 700 mμ for each of the eluted samples. Use 20 mμ intervals, except in regions of maximum or minimum absorption where readings should be taken closer together (5, 10 or 15 mμ). Readings on the chlorophylls should run from about 400 - 700 mμ, whereas those for caroenoid pigments should run from about 400 to 600 mμ. Be sure to switch to the red-sensitive phototube and filter when readings are being taken above 650 mμ. Record data for each pitment in section III of the data sheet. Name		Science IV A Hour	
\frac{light}{chloroplasts} = dyc - 11_2(colorless) + \frac{1}{2} \cdot 11_2$$ Prepare spinach chloroplasts as follows: Homogenize with 0.5M sucrose solution at 0° C for 30 seconds in a Waring blendor. Filter the suspension through two layers of cheese cloth. The filtrate should then be centrifuged at 50 times the force of gravity (50G) for 10 minutes. The supernatant is then decanted and discarded. The pellet at the bottom, containing the chloroplasts, should be resuspended in 0.5M sucrose. It is important to keep the chloroplasts at 0°C; they deteriorate rapidly at higher temperatures. In each of two test tubes, mix: - 2 ml. of phosphate buffer, 0.1M, pH 6.5 - 2 ml. of dye solution (2, 6 dichlorophenolindophenol, 2.5 x 10^{-4} M) - 0.1 ml. of chloroplasts suspension (2 drops) - 6 ml. of distilled water $\chi_{i}(x,x)^{\alpha}$ Swirl to mix, wrap one tube immediately in aluminum foil to protect it from light, and expose the other to bright light for 10 minutes. Compare. (Protect the chloroplasts from heat radiation by placing a glass tumbler filled with water between the light source and the reaction tubes.) bevise an experiment to show that the chloroplasts and dye must be illuminated together to obtain this result. Describe it in your notes. What does this mean for the plant? EXERCISE - Questions Based on Outside Readings	Name		
bunch of fresh grapes, select a firm grape with a waxy, whitish "bloom" on the skin. Rub the grape against a paper towel to remove as much of the bloom as possible. Open a petri dish of agar and roll the polished grape over the surface. Press very gently, so that the jellylike agar surface is not broken. After most of the surface of the grape has come into contact with the agar surface, discard the grape and replace the cover. Take a second petri dish of grape-juice agar and remove the cover. Over the surface of the agar, roll a fresh grape from which the bloom has not been removed. Discard the grape and cover the dish. Label both petri dishes and set them in a moderately cool place. Crush a few grapes in a beaker or other container. Pour the crushed grapes (skins, pulp, seeds, juice, and all) into a test tube until it is about 3/4 full. Cover the test tube loosely with a piece of aluminum foil and set it in a moderately cool place. Observe the petri dishes and the test tube of crushed grapes for two or three days. Look for evidence of fermentation in the test tube. Examine the surface of the agar for colonies of microorganisms. If there is fermentation in the tube of crushed grapes, you can learn whether yeasts or other microorganisms are present by "plating" on petri dishes of agar. With a long dropper, remove a drop of the fermenting juice from near the bottom of the test tube. Place the drop in a test tube with 10 ml. of distilled water. (This technique is used so that the colonies that form will not be too close together for convenient observation.) Dip a cotton swab in the diluted juice and "paint" over the surface of a fresh agar plate. Allow 2-3 days for colonies to develop. If you wish, compare with the results obtained when the drop of fermenting juice is taken from near the top of the test tube. Study all the petri dishes with a dissecting microscope if one is available. Mount samples of the colonies and study the organisms with a compound microscope. #### QUESTIONS: - 9. According to your observations, what general kinds of organisms occur on grape skins? - 10. How can you be sure that any organisms that form colonies on your petri dishes of agar did not come from the air or from your fingers? - 11. Would all the organisms that might be present on grape skins grow equally well on the same medium and at the same temperature? How could you find out? - 12. What evidence is there that fermentation of bottled grape juice by bread yeast is the same kind of chemical process as the fermentation of crushed fresh grapes by wild yeasts? # Additional Investigations The additional investigations in the following list are presented as questions to be answered by experiment. You probably have other questions to add to these. In nearly all the problems suggested, the necessary materials would not be hard to obtain. - A. Grape juice and apple juice sometimes turn to vinegar. Under what conditions is this change most likely to occur? What kinds of organisms, if any, are responsible for the change? How is the change similar to and how is it different from fermentation by yeast? - B. Buttermilk, sour cream, and yoghurt are all flavored by the action of microorganisms. (It should be possible to obtain cultures of these microorganisms from a dairy or creamery.) Is this action a type of fermentation? Are the same products formed as when yeast carries on fermentation in grape juice? Would the dairy microorganisms carry on fermentation in grape juice, and if so, would the products be the same as those produced by yeast? - C. Can yeasts survive in the presence of free oxygen? Does fermentation go on in the presence of free oxygen? - D. For library research: What kinds of industrial processes depend upon fermentation? In what ways is fermentation important in the production of foods, industrial chemical compounds, and antibiotics? , ,,__ - B. Glycolysis - 1. Relationship to Fermentation 2. Experimental Evidence for Glycolysis 3. Outline of Process of Glycolysis 4. Location of Occurrence of Glycolysis # II. Aerobic Respiration ### INTRODUCTION: Aerobic respiration is the breakdown (or oxidation) of glucose in a very specialized organelle within the cell. In this organelle, the mitochondrion, glucose - $C_6 H_{12} O_6$ fragments are dehydrogenated which means that the molecule's hydrogen atoms are removed. This removal of hydrogen atoms constitutes an oxidation reaction. We have just studied the processes of fermentation and glycolysis which are also concerned with the breakdown of glucose to ethyl alcohol or pyruvic acid and the subsequent release of energy. The process of aerobic respiration with which we are now concerned differs from the processes of fermentation and glycolysis in that this process requires oxygen and begins with the end product of glycolysis - pyruvic acid. Therefore aerobic respiration is the complete breakdown of glucose to carbon dioxide and water and as such releases a great deal more energy. - A. Methods of Energy Release From Fuels - I. How energy Gets Into Fuels - 2. How Energy is Released from fuels by Oxidative Processes - a. Rapid Processes b. Slower "stepwise" Processes B. The Kreb's Cycle The Kreb's Cycle is the series of biochemical reactions occurring in the cell's mitochondria in which a smaller part of the glucose molecule, pyruvic acid, is broken down to carbon dioxide and water in the presence of oxygen. This "cellular oxidation" releases large amounts of energy which are then stored in the molecule ATP. It is ATP which carries the energy from place to place within the cell as it is needed for cellular growth, repair or maintenance. - 1. The stages of Cellular Oxidation in the Kreb's Cycle - a. Stage One A Glycolytic Process - b. Stage Two Kreb's Cycle - (1) Dehydrogenation the Oxidative Process (2) Decarboxylation - Breaking and Rearranging of the Carbon Chain 146 - c. Stage Three The Uptake of Released Energy by ATP - (1) The Role and Mechanism of ATP (2) The Pickup of Hydrogen Atoms (3) The Transfer of Hydrogen Atoms - C. The Electron Carrier System A Chain of Enzymes - 1. Types of Enzymes Involved - a. Dehydrogenases - b. Flavoproteins - c. Cytochromes - d. Cytochrome Oxidase 2. Oxidative Phosphorylation 4. Summary of Electron Transport Note: It is this process of transporting II atoms or the atom's electrons which generates about 90% of the energy as ATP in cellular respiration. 1000 138 III. Flow Diagram of Energy Transfer From Glucose to ATP ERIC Full Text Provided by ERIC # LOCALIZATION OF PATHWAYS - I. Outside the Mitochondrion - A. Fermentation the Role of Enzymes B. Glycolysis - Enzymes and Muscle Contractions - II. Inside the Mitochondrion - A. The Kreb's Cycle B. Electron Transport # Fermentation and Respiration # ENERGY BALANCE - I. The Efficiency of Energy Cycles Fermentation vs. Respiration - A. General Flow Diagrams - 1. Fermentation 2. Respiration - B. Generation of Energy as $\Lambda TP \Lambda$ Comparison - 1. Fermentation - a. Percent Efficiency b. Caloric Relationships - 2. Respiration - a. Percent Efficiency b. Caloric Relationships - II. Variations in Energy Content of Food Reserves - Λ . Rates of Respiration Λ Laboratory Investigation - 1. Laboratory Investigation Fermentation and Cell Respiration # FERMENTATION AND CELL RESPIRATION #### INTRODUCTION: Two kinds of energy-releasing processes occur in cells. One is called aerobic respiration and the other, anaerobic respiration, or fermentation. In aerobic respiration, oxygen is needed to bring about a combustion of materials (usually sugars) in the cell to release energy. In anaerobic respiration, energy is released in the absence of oxygen. The essential chemical event in anaerobic respiration is the rearrangement of sugar molecules. The energy obtained from both kinds of respiration is used to make adenosine triphosphate (ATP). Also, carbon dioxide and heat energy are released. In this investigation, you will measure the rate of aerobic respiration in a plant and the rate of anaerobic respiration in a protist, yeast. #### MATERIALS: test tubes 2-hole rubber stopper or corks glass tubing pinch clamps rubber tubing dropping pipettes mineral oil marking pencil ring stand cake yeast 10.0% glucose solution Burette clamps stirring rod pea seedlings soda lime absorbent cotton metric ruler ## **PURPOSE:** To investigate rates of respiration. ## PROCEDURE: A. You will measure the rates of respiration in terms of volumes of gas (oxygen and carbon dioxide) used or produced. The device that you will use to measure volume is called a manometer. Many types of manometers can be purchased or made in the laboratory. You will be provided with materials for assembling a simple manometer. Using a marking pencil, mark off the side arm of the bent pieces of glass tubing into equal units of about 4 inch in length. Assemble the manometer as shown below. 143 B. Add 3 ml. of water to one of the manometer test tubes. Firmly replace the stopper in the test tube. Place a drop of mineral oil into the opening of the side arm. Move the drop of mineral oil to the proximal (near) end of the side arm in the following way. The drop of mineral oil will serve as the indicator. Release the pinch clamp on the escape tube. Evacuate the air from a dropping pipette by squeezing the bulb. While squeezing the bulb of the dropping pipette, insert the glass tip into the escape tube. Release the bulb. You will draw air out of the test tube, and the drop of mineral oil should move inward. Close the tubber tubing with the pinch clamp or your fingers. Repeat the procedure until the drop of oil is at the proximal end of the side arm. Remember to close the escape tube after each evacuation of air. When the drop of oil is in the desired position, close the escape tube with the pinch clamp. The tube you have prepared will serve as the control manometer. C. Place a piece of yeast about the size of a small pea in the other test tube. Crumble the			
yeast as you put it in the tube. Add about 1 m:1. (20 drops) of 10.0% glucose to the yeast in the tube. This is the experimental tube. Replace the stopper. Working quickly, place the drop of mineral oil and adjust to proximal position as described in Step B. 1). Observe the indicator drops in both tubes. Start taking readings of movements of the indicator drops about a minute after you first notice movement in the arm of the experimental tube. Take readings every minute. Express your data in terms of numbers of units of movement of the indicator drop per minute. Subtract any movement in the control manometer from your readings. Continue to take readings until movement stops. # QUESTIONS: 1. Record your data. Anaerobic respiration can be expressed in the following empirical equation: $$C_{6}II_{12}O_{6}$$ enzymes $2 C_{2}II_{5}OH + 2 CO_{2} + 2 p$ Anaerobic respiration that occurs in animal tissues, such as muscle, can be expressed in this empirical equation: $$C_6 H_{12} O_6$$ enzymes $2 C_3 H_6 O_3 + 2 \text{ pp}$ QUESTIONS: 2. Why was it necessary to move the indicator drop to the proximal end of the side arm? 144 E. Place pea seedlings in one of the test tubes until the tube is a little more than half full. Place some cotton over the pea seedlings. Put some soda lime over the cotton. Do not put so much soda lime in the test tube that the glass tubing in the stopper dips down into it. The soda lime will absorb the carbon dioxide. Replace the stopper and glass tubing firmly in the mouth of the test tube. Place the indicator drop at the distal (far) end of the side arm. It may be necessary to draw the drop inward a small distance to prevent it from dropping out. Prepare a control manometer with a volume of water equal to the volume of the materials in the experimental tube. F. Allow 4-5 minutes for establishment of equilibrium in the tubes before taking readings. Take readings in terms of units of movement every 5 minutes. Subtract readings of the control manometer. # QUESTIONS: 3. Record your data. Aerobic respiration is a more complex chemical process than anaerobic respiration. Mnay steps are involved. The anaerobic respiration of one molecule of glucose yields 2 molecules of ATP. The aerobic respiration of one molecule of glucose yeilds approximately 38 molecules of ATP. The aerobic respiration of glucose can be summed up in the following empirical equation. (The equation is a summary and by no means expresses the actual chemical events of aerobic respiration.) $$C_6 II_{12}O_6 + 6O_2 \xrightarrow{\text{enzymes}} 6CO_2 + 6II_2O + \text{approx. 38 } \text{p}$$ # QUESTIONS: - 4. Why was it necessary to place the indicator drop at the distal end of the side arm? - 5. How could you determine the weight of the carbon dioxide given off? From the data, how could you determine the approximate weight of the oxygen used? ### **REVIEW QUESTIONS:** - 1. Why was it necessary to use a control manometer? - 2. The summary equation for aerobic respiration is essentially the opposite of what process? Explain. - 2. Laboratory Investigation Respiration Quotient - a. Parallel Reading: Fermentation and Respiration Like many other terms, fermentation and respiration are defined differently by different people. It would not be possible to repeat all these definitions here, nor would it be very useful. Most biologists probably think of fermentation as a process whereby food materials are only partially oxidized by micro-organisms; that is, some of the products still contain energy which can be released by further oxidation. To many, respiration means the process of breathing. (The word respiration is derived from the Latin word respirare, meaning to blow back or to breathe.) Ordinarily when a physician speaks of a patient's rate of respiration, he means how many times the patient inhales (or exhales) in a minute. Many biologists define respiration as a process in which food material is broken down and most of its energy released in the cell. Those who use this definition regard alcoholic fermentation as an example of anaerobic respiration, because free oxygen is not utilized. If molecular oxygen is used, the process is called aerobic respiration. Other biologists define respiration as a process in which energy is liberated from food materials, and in which the final oxidizing agent is molecular oxygen. If we use this definition, respiration is always an aerobic process, and since alcoholic fermentation is anaerobic, it would not be called respiration. Acetic acid fermentation (the process in which bacteria of the genus Acetobacter convert ethanol to acetic acid and water) is an example of fermentation which involves respiration since molecular oxygen is used. Most researchers in the field of respiration consider incomplete oxidations, such as those in acetic acid fermentation, to be respiration if they involve the oxidation of hydrogen to water. The conversion of sugar to carbon dioxide and water by complete oxidation provides more energy than the conversion of sugar to alcohol and carbon dioxide by fermentation. The summary equations for these two processes are: 1. alcoholic fermentation of glucose: $$C_6H_{12}O_6 \rightarrow 2 CH_3CH_2OH + 2 CO_2 + 54 kg calories$$ 2. respiration of glucose: $$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 686 \text{ kg calories}$$ Those organisms which can ferment sugar may have an advantage over those which cannot when free oxygen is not available, but they are at a disadvantage is they cannot carry out respiration when oxygen is available. If molecular oxygen is available, most cells, including yeast, can oxidize pyruvic acid to carbon dioxide and water. This is accomplished by a series of enzymatic reactions which have been called the Krebs cycle, the citric acid cycle, or the tricarboxylic acid cycle. The net result of this complex series of simple chemical reactions is the production of 38 molecules of ATP from the respiration of one molecule of glucose. By comparison, recall that a net gain of only 2 molecules of ATP results from the alcoholic fermentation of glucose. Another respiratory mechanism has been recognized in recent years called the pentose-phosphate pathway. This mechanism is not quite as efficient as a combination of glycolysis and the Krebs cycle since only 36 molecules of ATP may be formed from a molecule of glucose. The results of a number of experiments indicated that the pentose-phosphate cycle is a common oxidative pathway in many microbes and in most plant tissue. A discussion of the pentose-phosphate cycle is beyond the scope of this reading but can be found in several recent biochemistry texts. It may be useful to examine some of the characteristics of respiratory processes. We can measure the rate of respiration by measuring the rate of consumption of either oxygen or food, or the rate of production of carbon dioxide, water, or heat. While respiration occurs both in the light and in the dark, the release of oxygen during photosynthesis may mask the utilization of oxygen involved in green plant respiration. Here we see the importance of the proper choice of experimental organisms. It would be extremely difficult to measure respiration in a photosynthesizing green plant. For this reason, germinating seeds, which have not yet begun photosynthesis, are often used in studying respiration. b. Laboratory Investigation - Measuring Rates of Respiration ## MEASURING RATES OF RESPIRATION #### INTRODUCTION: Precise measurements of the rate of respiration require elaborate equipment. We can, however, obtain reasonably accurate measurements using simpler methods. This is often done by placing the living materials in a closed system and measuring the amount of oxygen which goes into the system or the amount of carbon dioxide which comes out. By using suitable techniques, we can measure the amounts of one or both of these gases over a given period of time and determine the respiration rate. A simple volumeter can be set up as shown on page 70. The volumeter should be arranged as follows. The material for which respiration measurements are desired is placed in one or more test tubes of uniform size. Each tube contains a stopper and pipette as shown in the illustration. One of the test tubes contains an inert material such as glass beads or washed gravel and is used to correct changes in temperature and pressure which cannot be completely controlled in the system. 157 VOLUMETER This tube is called a thermoharometer. Equal volumes of both test and inert materials must be placed in all the tubes. This precaution is necessary to assure that an equal volume of air is present in each tube. A very small drop of colored liquid is inserted into each pipette at its outer end. This closes the tube, so that if there is any change in the volume of gas left in the tube, the drop of colored liquid will move. (The direction of movement depends on whether the volume of gas in the system increases or decreases.) distance of movement over a given period of time can be read from a ruler placed on the side of the pipette. The volume of gas added or removed from the system can be read directly from the calibrated pipette. In attempting to measure respiration with the equipment just described, we must take into consideration not only that oxygen goes into the living material (and thus out of our volumeter test tube), but also that carbon dioxide comes out of the living material (and thus enters into the volumeter test tube). If we are to measure the oxygen uptake in our respiring material we must first trap the carbon dioxide as it evolves. This can be done by adding any substance (ascarite is commonly used) which will absorb the carbon dioxide as fast as it is evolved. Efficient removal prevents the carbon dioxide from being added to the volume of gas in the tube. Each team should set up one volumeter and compare the respiration of dry seeds with those which have been soaked for 24 hours. The work			
involved in setting up the volumeter and in obtaining measurements is difficult to complete in one laboratory period. It is very important that certain preparations be made in advance, and that each member of the team understands clearly what is to be done. MATERIALS: (per team) one volumeter (complete) one thermometer one hundred Alaska pea seeds germination tray 100 ml. graduate cylinder glass beads three beakers, 150 ml. solution of dye cotton ascarite eye dropper #### PROCEDURE DAY I: Each team should place 40 pea seeds in a germination tray between layers of wet paper towels and allow them to soak for 24 hours. (label the trays as to team, class, experiment, and date.) ## Volumeter Tubes after Preparation #### PROCEDURE DAY II: - 1. Determine the volume of the 40 soaked seeds. This volume will be used as a standard for preparing materials for the other two test tubes in the volumeter. (Volumes of solid objects, including seeds, can be determined readily by adding them to a measured volume of water in a graduated cylinder and reading the volume of displaced water.) - 2. Determine how many glass beads must be put in the tube with the dry seeds so that the volume of air in the tubes with soaked and dry seeds will be the same. To do this, place 25 ml. of water in a 100 ml. graduate cylinder. Add the dry seeds. Then add enough beads so that the increase of the water level in the cylinder containing both seeds and beads is equal to the volume of the seeds soaked for 24 hours. Dry the 40 seeds and the glass beads by blotting them with paper toweling or cleansing tissue. Place the dried seeds and beads together in a beaker. Label the beaker and store it in the laboratory until you are ready to use the volumeter the following day. - 3. Obtain the same volume of glass beads as that determined for use for the soaked pea seeds. Place these in a beaker, label the beaker, and store it in the laboratory until you are ready to set up the volumeter on the third day. - 4. Mix about 25 ml. of a dilute solution of vegetable dye (food coloring) in water and add a drop of detergent. 149 5. Set up the volumeter as illustrated on page 70. Add water to the jar in which the test tubes are immersed, but do not add anything to the test tubes. ### PROCEDURE DAY III: - 1. Remove the stoppers from each of the three test tubes. Add the 40 soaked pea seeds to one tube; add the dry pea seeds and glass beads which you measured out in Step 2 to the second tube; and add the glass beads measured out in Step 3 to the third tube. Loosely pack cotton over the material in each tube to a depth of ½ inch. Add ¼ teaspoon of ascarite or sodium hydroxide to the top of the cotton in each tube. CAUTION: Ascarite is caustic. Be very careful not to get it on your hands, your hody, or on your clothes. If some is spilled, clean it up with a dry paper towel or paper cleansing tissue. Do not use damp cloth or paper as ascarite reacts strongly with water. The tube should now be packed as illustrated in the diagram on page 71. - 2. Replace the stoppers and arrange the pipettes so that they are level on the table. - 3. With a dropper, add a small drop of colored water to each of the three pipettes. (See Step 4 of Procedure, Day II.) The diagram shows setup of stopper and pipettes attached to each tube in volumeter. After colored water indicator has been introduced at outer end of pipette, it can be adjusted by opening pinch clamp and drawing air from system or pushing it into system with eye dropper inserted into rubber tube at top of apparatus. Adjust the marker drops so that the drop in the thermoharometer is centered in the pipette and the other drops are placed near the outer ends of the pipettes. - 4. Allow the apparatus to sit for about 5 minutes before making measurements. - 5. For 20 minutes, at 2 minute intervals, record the distance the drop moves from its starting point. (If respiration is rapid, it may be necessary to readjust the drop with the medicine dropper as described in Step 3. If readjustment is necessary, add the new readings to the old readings so that the total change during the time of the experiment will be recorded.) Record your results in a table form. NOTE: If the drop in the thermobarometer pipette moves toward the test tube, subtract the distance it moves from the distance the drop moves in each of the other pipettes. If the drop in the thermobarometer pipette moves away from the test tube, add the distance it moves to the distance the drop moves in each of the other pipettes. The readings in each case should be recorded as the change in volume from the original reading. If the observed volumes are corrected to volumes at standard temperature and pressure, the equivalent weights of glucose used may be calculated with greater accuracy. 160 # QUESTIONS FOR DISCUSSION: - 1. What is the effect of moisture on the germination of pea seeds? - 2. Would adding more water to the soaked seeds result in an increased rate of respiration? - 3. What is the significance of the difference in the respiration rate of dry seeds compared with that of germinating seeds as far as the ability of the seed to survive in nature is concerned? # INVESTIGATIONS FOR FURTHER STUDY: , - 1. Design a modification of this experiment which will allow you to measure the amount of carbon dioxide given off by seeds during respiration. - 2. Measure the effects of temperature on the respiratory rates of two different insects. - 3. Compare the rates of respiration of different kinds of plant tissues. You might use tissues such as carrot root, potato tuber, or leaves. If green tissues are used, keep them dark by use of black paper or cloth. # c. Pattern of Inquiry (1) The Respiratory Ratio - After completing the investigation of Measuring Rates of Respiration, a student wished to study other aspects of respiration in seeds. He decided to see if the respiratory quotient or ratio is different in different kinds of seeds. The respiratory quotient is defined as the ratio between the volume of carbon dioxide produced and the volume of oxygen used (RQ = CO_2/O_2). He experimented with seeds of wheat and castor bean, and obtained the results shown below. Milliliter of Carbon Dioxide Produced Milliliters of Oxygen Used			
first part of this Pattern of Inquiry. Instead of measuring the volumes of carbon dioxide produced and oxygen used, he used a different kind of apparatus and obtained the weights of each. For the germinating wheat grains he obtained the following data:	Milligrams of 0_2 Used	Milligrams of CO ₂ Produced	Milligrams of CO ₂ Produced/Milligra
as \bar{l} ; if there is one zero between the decimal point and the first digit, the characteristic is $\bar{2}$, etc. Example: $$log .008 = -3 + .9031$$ or $\overline{3}.9031$ or $10-3 + .9031-10 = 7.9031-10 = -2.0969$ Note that the characteristic of \log_{10} 0.008 must be between -3 and -2 since \log_{10} 0.001 = -3 and \log_{10} 0.010 = -2 \log_{10} 0.008 = -3 + .9031 does not mean that it equals -3.9031 since the latter would turn out to be between -3 and -4 instead of between -3 and -2. ## SAMPLE PROBLEMS: Find the characteristic of the logarithm for each of the following numbers. - 1) 1000 - 2) 159 - 3) .5230 - 4) 5,230,000 - 5) .00007 - 6) 6.2380 - 7) .00523 - 8) 43.4 Finding the mantissa of the logarithm of a number: Going back to our original example, log 382 = 2.5821 It is clear that the logarithm of 382 must be between 2 and 3 since 382 is between $10^2 = 100$ and $10^3 = 1000$. Neither the digit 2 nor the digit 3 can alone express the logarithm to the base 10 of 382. Such a logarithm has to be a number somewhere between 2 and 3 and is expressed as the decimal .5821. This decimal is called the mantissa of the logarithm and there are two ways of finding it. Tables can be used to find the mantissa of a common logarithm. In the left hand column, find the first two digits of the number for which you want to find the mantissa. Then find the 3rd digit of the number in the top horizontal column. The mantissa is then located at the junction of the two rows you have found. Thus: $\log 382 = 2.5821$ or in exponential terms: $10^{2.5821} = 382$ If there is a fourth significant digit in the number whose logarithm is being looked for, round off to three significant digits or use tables for 5-place logarithms. ### SAMPLE PROBLEMS: - 9) log 274 - 10) log 0.00458 - 11) log 1,378,000 - 12) log 124 - 13) log 0.0124 - 14) log 39.6 - 15) log .0435 - 16) log 0.000346 - 17) log 360 - 18) log .005 The tables can also be used to convert a logarithm into its original number, or antilogarithm. Example: Find the antilogarithm of 2.6812 (that is, find the number whose logarithm is $\bar{2}.6812$). The mantissa, 0.6812 represents the digits 480 on the log table. Since the characteristic is $\bar{2}$, the antilogarithm of $\bar{2}.6812$ is .0480, that is, $10^{2.6812} = 0.0480$. ### SAMPLE PROBLEMS: - 19) antilog 1.5211 - 20) antilog 9.5211-10 - 21) antilog 1.6972 - 22) antilog 2.3729 - 23) antilog 9.7364-10 - 24) antilog 3.9717 - 25) antilog 3.9717 The other way to find the logarithm of a number is with the D-L combination of scales on the slide rule. To find the logarithm of a number, set the D and L scales in exact register with one another, locate the significant digits on the D scale and the required logarithm will be found by use of the cursor in register on the L scale. The characteristic of the logarithm is found from the position of the decimal point in the same way as it is determined when a log table is used. To find the number when given its logarithm, locate the mantissa of the logarithm upon the L scale and read off the significant digits of the number in register on the D scale. The decimal point for the number is fixed by the characteristic of the given logarithm in the usual manner. #### COMPUTATION WITH LOGARITHMS Once the use of the tables in finding logarithms and antilogarithms has been mastered, one is now ready to begin using logarithms as tools for computation. Such work is made simple on consideration of the meaning of each of the following theorems: Theorem 1. $$\log_b (xw) = \log_b x + \log_b w$$ Theorem 2. $$\log_b (x/w) = \log_b x - \log_b w$$ Theorem 3. $$\log_b (x^r) = r \log_b x$$ These theorems are simply translations from the language of exponents into the language of logarithms. The corresponding laws for exponents are as follows: $$b^y \quad b^w = b^{y+u}$$ $$b^{y}/b^{w} = b^{y-u}$$ $(b^{y})^{r} = b^{yr}$ Proofs of the three theorems will not be given here but can be found in any math book on the subject. 1st EXAMPLE; Calculate $$\frac{(3.21)}{294}$$ Call the result x. Then by theorems 1 and 2 above, $$\log x = \log \frac{(3.21)(52.8)}{294} = \log 3.21 + \log 52.8 - \log 294$$ NOW $$log 3.21 = 0.5065$$ $$log 3.21 + log 52.8 = 2.2291$$ $$\log x = -0.2392$$ A negative exponent can be converted to a logarithm with a negative characteristic and a positive mantissa in the following manner: $$y - 10 = -0.2392$$ where $y-10 = log x$ $$y = -0.2392 + 10$$ $$y = 9.7608$$ thus: $\log x = 9.7608-10$ or $\overline{1}.7608$ hence $x = \text{antilog } \overline{1}.7608 = 0.576$ By using logarithms, the problem has been done in a much shorter time than it would have been by straightforward arithmetic. The use of logarithms shortens computation time because the cumbersome, time-consuming operations of multiplication, division and root-extraction are replaced by simpler operations of adding logarithms for multiplication, subtracting them for division and dividing them by the root-index for root-extraction. In so doing, every positive number is represented as a power of 10: $$3.21 = 10^{0.5065}$$ $52.8 = 1.7226$ $294 = 10^{2.4683}$ $$\frac{(3.21) (52.8)}{294} = \frac{(10^{0.5065}) (10^{1.7226})}{10^{2.4683}} = 10^{0.5065} + 1.7226 - 2.4683$$ $$= 10^{-0.2392} = 10^{9.7608-10} \text{ or } 10^{\overline{1}.7608} = 0.576$$ Note that this problem could be done even faster on the slide-rule, but in multiplying and dividing on the slide-rule, one is still carrying out the same operations since the C and D scales are scales of logarithms. Consider the next example (#2) Find 100 $(1.02)^{64}$, letting the result be called x. Then by theorems 1 and 3: $$\log x = \log 100 + 64 \log 1.02$$ = 2 + 64 (0.0086) = 2.5504 Hence, x = antilog 2.5504 = 355 If the above problem is attempted with the slide-rule alone, the value of using logarithms for computation becomes quickly appreciated. 3rd EXAMPLE Find $$\sqrt[4]{329}$$ Let x be the result. $x = \sqrt[4]{329} = 329\frac{1}{4}$ By theorem 3: $$\log x = \frac{1}{4} \log 329 = \frac{1}{4} (2.5172) = 0.6293$$ hence x = antilog 0.6293 = 4.26 # SAMPLE PROBLEMS: Evaluate by means of logarithms: 1. $$\frac{(29.7)(3.4)}{572}$$ 2. $$\frac{(492) (6.82)^2}{(59)^3}$$ 3. $$\sqrt[3]{79200}$$ Published and Coby: ght 1956 by The Welch Scientific Company, 7300 North Linder Avenue, Skokie, Illinois 60076	,		
---	---	---	---
---	---	---	--
--	---	--	---
		1	
10000 10000	# "K-00" KAKK KAON SKKK KSOOK KOOK	1 .609 .6056 .6104 .6152 6200 .6249	0 5774 5820 5867 5914 5961 6000
2007, 2007,	2679 2717 2754 2792 2630 2857 74 EU	100 100 100 100 100 100 100 100 100 100	2309 2345 2382 2419 2456 2493 76 58
12 0 5 103 to 15 16 34	TOTAL COLO COLO TA CO	# 1999 * 1997 1914 1999 * 1998 1998 #F 66 05 20 11 45 90	3 9325 9391 9457 9523 9590 9657 48 88 28.64 31 82 35
1.768 1.768	0875 0910 0945 0981 1016 1051 84 50 1.192 1.200 1.209 1.217	.0699 .0734 .0769 .0805 .0840 .0875 35 48 1.150 1.159 1.157 1.175	0559 0594 0629 0664 0699 86 48 1.111 1.118 1.126 1.134
.1405.1441.1477-1512.1548.1584.81.53.1.327.1.337.1.347.1.356.1.366 .1584.1650.1454.1691.1777.1745.88.64.1.376.1.377.1.377.1.407.1.418	. 1051 . 1086 . 1122 . 1157 . 1192 . 1228 83 - 31 1.235 1.244 1.253 1.262 1.271 . 1228 1.262 1.2	0875 0910 0945 0981 1016 1051 84 50 1192 1.200 1.209 1.217 1.226	0699 0734 0769 0605 0840 0875 35 48 1.150 1.159 1.167 1.175 1.183
1.262 1.2	0875 0910 0945 0981 1016 1051 84 50 1192 1.200 1.209 1.217 1.226	0699 0734 0769 0605 0840 0875 35 48 1.150 1.159 1.167 1.175 1.183	0559 0594 0629 0664 0699 86 48 1.111 1.118 1.126 1.134 1.142
\text{poise} \right)$$ #### PROCEDURE FOR DETERMINING VISCOSITIES: The following procedure is run first with a volume of standard in order to determine k, and then with an equivalent volume of fluid whose viscosity is to be determined. - 1. A volume of fluid is measured out in introduced through tube I to bulb A. - 2. The viscosimeter with the sample inside is clamped vertically to a ringstand and immersed in a constant temperature water bath until the desired temperature is obtained. - 3. The fluid is raised up into tube II by suction until the bottom of its upper meniscus is just on the B mark. - 4. Removal of suction by releasing the index finger from tube I allows the fluid to begin its flow through the capillary and the time required for the meniscus to move from the B mark to the C mark is measured in seconds with a stop-watch. - 5. The constant k is determined by measuring the time it takes for a given volume of standard to run through the capillary and then plugging this value into the following equation: $$k = \frac{n_{H_2O \text{ at } 25^{\circ}C}}{tD_m}$$ The viscosity of an equivalent volume of unknown fluid is then given by: $$\mathcal{N} = ktD_{m}$$		TABLE OF VISCOSITY STAND	
range of change of pll with addition of a reagent. As shown in Fig. 1, the equivalence point of the NaOH-HCl system will occur at about pll 7. Since the equivalence point corresponds to the inflection point of the graph (the point where the line curvature changes from concave up to concave down, or vice versa), it may be approximated visually. NOTE: If stoichiometric relationships are desired, the concentration of the HCl solution may be calculated by equation: Since $N = \frac{\#eq}{\#liters}$, then N_{acid} - V_{acid} = N_{base} - V_{base} The end point is designated as that point in a titration where an indicator undergoes a visible color change. For stoichiometric use, the end point should coincide with the equivalence point. This relationship can be insured by the proper selection of indicators, as follows: When the pH range over which an indicator undergoes its color change coincides with a portion of the flat vertical section of the titration curve, it will be a suitable indicator for the titration. To illustrate, the approximate pH ranges of color change of some indicators have been indicated on Fig. 1. Thus it can be seen that phenolphthalein, bromothymol blue, or methyl red would be a suitable indicator. Thymol blue would not be suitable for the NaOH-HCl system. By conventional methods, a chemical indicator is used in a neutralization titration, and its change of color marks an end point. This should coincide with the equivalence point. Since the latter point can be determined from a titration curve, a titration may be performed (and the corresponding stoichiometric relationships determined) using a pH meter in lieu of an indicator. # DOUBLE INDICATOR TITRATIONS: Double indicator titrations and selection of indicators can be illustrated with the sodium carbonate-hydrochloric acid system. 1.0 gr of Na_2CO_3 in 100 ml of solution titrated with 0.10 HCl illustrates the two-equivalent point curve. (See Phenolphthalein would be a good indicator for the first end point and methyl orange would work well for the second end noint. Phosphoric acid titrated with NaOH would also illustrate a polyprotic system (See Fig. 3). # TABLE OF CONJUGATE ACID-BASE PAIRS INCLUDING ACID IONIZATION CONSTANTS	CONJUGATE	ACID	CON
--	--		acceleration due to gravity (standard) g_n
TRANSPORT, REGULATION AND EXCHANGE OF ## OF MATTER THROUGHOUT THE ORGANISM'S INTERNAL ENVIRONMENT In IIA we examined in some detail the structure and general functions of four very specialized systems within multicellular organisms: the digestive, the respiratory, the circulatory, and the excretory system. Of necessity each system was considered separately, but it is necessary to remember that these systems' functions are interdependent. Not one of these systems could survive in the absence of any other - they are interconnected in both their anatomy and their physiology. As you know, the digestive system is necessary for the intake of matter, which is then assimilated into the organism as a source of energy; but you must remember that this energy could never be released without a source of oxygen - this is where the respiratory system comes in. The oxygen is transported in turn by the circulatory system. After the cell's processes have released the stored energy of the food molecules by breaking them down the waste residue must be quickly removed or the resulting high corcentration of toxic materials would poison the cells of the organism. circulatory system again transports these wastes to a specialized group of organs, the excretory system, whose function it is to remove waste. Another very important idea to be remembered is that all of these processes occur within cells, some very specialized, but all bearing an outer cell membrane. Perhaps the role that this membrane plays in transporting materials into and out of the cell will be more fully appreciated after the completion of this section of the course. ## COMPOSITION OF BODY FLUIDS #### INTRODUCTION: One of the principal problems facing a cell as part of a multicellular organism is that it no longer has free access to the external environment. To obtain water, salts, and organic nutrients, to get rid of wastes, and for gas exchange, it must depend on some sort of circular system. The importance of the circulation in maintaining an animal carriedly be overestimated. By far the largest cause of death in man is failure of the circulation. Beyond its nutritive and excretory roles, the circulatory system in vertebrates performs an essential function in defending the animal from invasions of foreign organisms and foreign molecules. A failure of these defense mechanisms can lead to death as surely as the failure in the nutritive and excretory functions of the blood. The blood of higher animals is a complex tissue. It may be separated by centrifugation into a fraction composed of cells, and a cell-free liquid fraction called the plasma. The plasma is a complex solution of proteins, sugars, salts, and other substances. One of the plasma proteins, fibrinogen, is the precursor of the insoluble fibrin of the blood clot. The remainder of the plasma after the clot has been removed is called serum. For both the nutritive and defensive roles of the circulatory system, both cells and plasma are needed. Let us first consider the nutritive function of the blood. Many substances are carried in water solution in the plasma and are transported to the cells in this fashion. Other substances are adsorbed on proteins in the blood and are carried in this way. Gas exchange presents further problems. A little oxygen and somewhat more carbon dioxide can be dissolved in the plasma; but the major transport of both these gases in vertebrates depends upon the red pigment, hemoglobin, an iron-porphyrin-protein. The hemoglobin is carried in specialized cells, the red blood cells or erythrocytes. About as much hemoglobin is packed into these cells as they can possibly hold. Some 30% of the red blood cell or 95% of its dry weight is hemoglobin. The red blood cells are nonmotile, and do little more than carry hemoglobin. In mammals these cells lose their nuclei hefore maturing; and as you would expect, from that point on they run down metabolically, dying after and average life of about 120 days. Iluman red blood cells are about 7.5 microns in diameter and have a biconcave disc shape which facilitates gas exchange. They are present in great numbers in the blood; a normal young man may have nearly six million erythrocytes per cubic millimeter of blood. (If the human blood volume is 6 liters, how many new red blood cells must be produced per day to keep the total number constant?) For defense, the body depends on both plasma proteins and cells. The plasma contains a special group of proteins, called antibodies, which combine with and hence inactivate foreign proteins, viruses, or polysaccharides, and also cause invading bacteria to clump together. Each antibody is specific for the substance or type of cell with which it reacts. Somehow our defense machinery knows the shapes of our own proteins and leaves them alone. When foreign proteins or polysaccharides called antigens are introduced into the circulation, antibodies against them are quickly synthesized. The cells of the defense system, the white blood cells or leucocytes, in marked contrast to the red blood cells, are motile and highly active. They can travel about in the blood stream, or by going through the wall of a blood vessel can wander out into the tissues and tissue spaces. They move more or less as does an ameba, by flowing in one direction or another. When infection strikes, they quickly travel to the invasion site in great numbers. There they destroy large numbers of invading organisms by ingesting them, a process called phagocytosis, and also release special substances which help organize the defense. The pus formed in and around an infection consists of dead white blood cells. A specialized group of white blood cells, the plasma cells (plasmocytes), produce antibodies. White blood cells can be divided into two groups: the round, smooth-nucleated lymphocytes and the granulocytes, which have irregularly lobes nuclei. White blood cells are slightly larger than red blood cells, and are present in considerably smaller number (about 8000 per cubic millimeter of blood). During infection, however, their number increases enormously, and this increase provides a sensitive warning that an infection is present. A third group of elements in the blood, the platelets (thrombocytes), is involved in clotting. When a blood vessel is cut open, an interlacing network of fibrin forms a clot which eventually closes the wound. This process is complicated, involving the platelets, calcium ions, and the plasma proteins thrombin and fibrinogen (thrombin is a proteinase which activates fibrinogen by hydrolyzing off part of it, turning it into fibrin). In addition to its nutritive and defensive activites, the blood provides a constant internal environment for the cells and tissues of the body. In a mammal the pll, temperature, and sugar concentration of the blood are held within very narrow limits. This relative stability of the internal environment makes it possible for a mammal to experience enormous changes in the external environment without damage. The great nineteenth century physiologist, Claude Bernard, was thinking of this when he said, "The constancy of the internal environment is the condition of a free life." 5 Reading: Allison, "Sickle Cells and Evolution", Scientific American, August, 1956 (#1065). Burnet, "The Mechanism of Immunity". Scientific American, January, 1961 (#78). Gordon, Blood Cell Physiology, BSCS Pamphlet Nossal, "How Cells Make Antibodies", Scientific American, December, 1964 (#199) Porter, "The Structure of Antibodies", <u>Scientific American</u>, October, 1967 (#1083) Smidt-Neilsen, "Coagulation of Blood", Animal Physiology pp 25-26. Speirs, "How Cells Attach Antigens", Scientific American, February 1964 (#176) Wood, "White Blood Cells vs. Bacteria", Scientific American, February 1951 ZuckerKandl, "The Evolution of Hemoglobin", Scientific American, May 1965 (#1012) # COMPOSITION OF BODY FLUIDS - I. Macroparticle Fraction of Whole Blood - A. Red Blood Cells or Erythrocytes - 1. Function Gas Transport - a. Respiratory Pigments - b. Factors Affecting Gas Transport - (1) Oxygen Dissociation Curve - (2) Blood pH - 2. Origin and Life History of Erythrocytes - 3. Problems برئر . - a. Anemia - b. Polycythemia 7 - B. White Blood Cells or Leucocytes - 1. Function - a. Diapedesis - b. Phagocytosis - 2. Origin and Life History of Leucocytes - 3. Problems Leukemia - C. Blood Platelets or Thrombocytes - 1. Function Clot Formation - 2. Origin and Life History - 3. Problems Defective Clotting ERIC Full Text Provided by ERIC - II. Fluid Fraction of Whole Blood - A. Water - B. Inorganic Salts C. Blood Sugar - D. Plasma Proteins - 1. Antibodies - a. Formation - b. Function - 2. Fibrinogen - 3. Blood Types - E. Hormones . 9 # III. Interstitial Fluids - A. Lymphatic System - 1. lymph - 2. lymph vessels - 3. lymph glands - B. Function IV. Control of Osmotic Balance Between Blood and Interstitial Fluids and Cell Fluids ERIC Full Text Provided by ERIC The material on pages 10-12 may be found TITLE Lab Investigations in Biology AUTHOR Smallwood, W. L. and Green, E. R. PUBLISHER Silver Burdett PAGE NO. 119-122 ## EXAMINATION OF BLOOD CELLS #### INTRODUCTION: The circulatory system can be called the body's transportation system. Almost everything that must be transported from one part of the body to another is transported in the blood. Examples of substances that are transported in the blood are oxygen, carbon dioxide, absorbed foods, and hormones. Blood is composed of different types of cells suspended in a fluid medium called plasma. The cells are very small. One cubic millimeter of blood may contain more than 5 million cells (solid particles). The solid particles of the blood are the erythrocytes (red blood cells). leucocytes (white blood cells), and platelets. The erythrocytes contain hemoglobin and carry oxygen and carbon dioxide to and from the cells. Leucocytes ingest bacteria and other foreign substances. The platelets are essential to			
blood clotting. Examination of blood cells and various chemical analyses of blood are important diagnostic tools. In order to carry out a microscopic examination of blood cells, the blood must be spread very thinly on a slide. In this investigation, you will become familiar with some of the techniques of preparing and staining blood smears. ## PURPOSE: To prepare and study a stained slide of blood cells. #### MATERIALS: sterile lancets microslides rinsing jars compound microscope wax pencil cotton paper toweling alcohol Wright's stain buffer solution, pN 6.4 distilled water ## PROCEDURE: ## A. Drawing the blood sample: Swab the ball of your middle or index finger with 70% isopropyl.alcohol and then with your thumb apply pressure to the base of the terminal joint and push forward until the ball of the finger becomes reddened with the blood that you have forced into its capillaries. Now prick the skin quickly with a new sterile lancet, wiping away the first drop of blood. Squeeze out a second drop of blood touching it to the right end of a clean microscope slide about one centimeter from the edge. - B. Making the smear: (following steps illustrated below) - 1. Place the narrow edge of another clean and nick-free slide to the left of the drop and at a 30° angle over it. - 2. Keeping the angle, pull the slide carefully to the right until it touches the blood. Wait for the blood to spread along the line of contact. - 3. Now with the right hand, push the angled slide smoothly toward the left until the blood is spread out or until the other end of the slide is reached. This method drags the blood along rather than pushes it which would crush some of the cells. The rate at which the blood is fed out can be varied by changing the angle of the slide. With thick blood reduce the angle to feed it out at a slower rate. If the blood is thin increase the angle. ### C. Drying the smear: With a waving motion, dry the slide rapidly in air to prevent crenation (notching or scalloping of edges) of the red cells. The slide is now ready for staining. #### D. Staining: - 1. With a wax pencil mark off a rectangular region 40mm in length and about the width of the slide on the side that has the smear. The wax lines will confine the staining solutions in this region to insure the best results. - 2. Being careful that the stain does not spill over the wax marks, cover the blood-smear with 10 to 12 drops of Wright's Stain for 1 to 2 minutes. Avoid evaporation by cutting down on time or by adding more stain. - 3. Add an equal amount of buffer solution (pH6.4) leaving on for 2 to 4 minutes. - 4. Rinse off the stain and buffer mixture in distilled water with one or two dips only. Avoid precipitate deposits by flushing with a pipetre. - 5. Blot the slide with two sheets of filter paper. Press but do not rub as this will remove some of the cells. - 6. Allow the slide to dry thoroughly before mounting and observing. ### E. Mounting: If the slide is particularly good and permanency is desired, apply a drop or two of mounting medium (Kleermount) covering over with a 40mm cover-glass. Avoid bubbles. Label the slide with your name, the date, and the type of stain used. Slides that have not been thoroughly dried above room temperature so as to remove all water will not be of any value when mounted in this manner. ### **OBSERVATIONS AND QUESTIONS:** When the slide is completely dry, examine the prepared blood smear under low power magnification. The red blood cells will appear to be pinkish after staining. Many of the larger white blood cells will appear to be blue, since they have large blue-stained nuclei. - 1. Describe the observable differences between red and white blood cells in the stained preparation. - 2. Using the 97X oil immersion objective and a Whipple micrometer disk inserted into the eyepiece, determine the diameters of the various cells in microns. Your instructor will have this equipment available for you. - 3. There are five types of white blood cells that can be recognized by the way the cytoplasm stains and by the structure of the nucleus. Checking with Blood Cell Physiology, by Gordon, see if you can find and recognize the 5 types on your slide. - 4. White blood cells are described as amoeboid. Explain this statement and relate it to their function. - 5. Why is there a greater abundance of red cells than white cells? - 6. What are some of the conditions that can cause an abnormally high number of leucocytes in the blood? - 7. Design a method for determining the ratio of white blood cells to red blood cells and carry it out with your slide. - 8. How does the ratio of wbc's to rbc's compare with those determined by other members of the class? - 9. Can you find any evidence that the average ratio of wbc's to rbc's differs according to sex? - 10. Why was a staining solution used in this investigation? ## FURTHER INQUIRY: Make smears of the blood of a frog, a fish, or any other animal available in the laboratory. What similarities do you notice between the blood cells of various animals? What differences in structure or proportion of blood cell types do you notice? The material on pages 17, 18 may be found TITLE Twenty-Six Afternoons for Biology AUTHOR Wald, G., et al PUBLISHER Addison-Wesley Publishing Company, Reading, Mass. 1966 PAGE NO. 92-93 Mechanisms Associated with the Transport, Regulation and Exchange of Matter Throughout the Organism's Internal Environment 19 #### FUNCTIONS OF BODY FLUIDS ### Required Reading: Part I Carlson, Johnson and Covert, The Machinery of the Body pp 67-135 Chapman and Mitchell, "The Physiology of Exercise", Scientific American May 1965 Comroe, "The Lung" Scientific American Feb. 1966 (#1034) Langley, Homeostasis, Chapter 6 Schmidt-Neilsen, Animal Physiology pp 13-25 Telfer and Kennedy, Biology of Organisms pp 247-251 Part II Baker, Matter, Energy and Life, Chapter 6 Vanderwerf, Acids, Bases and the Chemistry of the Covalent Bond Chapter 2 White, "Acids and Bases", Chemical Background for the Biological Sciences np 29-59 Part III Langley, Homeostasis, Chapters 4 and 7 Schmidt-Neilsen Animal Physiology Chapter 1 and 4 Telfer and Kennedy, The Biology of Organisms "The Kidney" pp 224-232, also p. 269 2nd paragraph Part IV Schmidt-Neilsen, Animal Physiology, begin with "The nervous system as originator of hormones" p. 6, p. 102-112. Langley, Homeostasis, Chapter 8 p. 28-29 (Ref. to Acetylcholine) Telfer and Kennedy, Biology of Organisms, "Homeostasis and Hormone Controls in Animals", pp 266-271 Part V Langley, Homeostasis, Chapter 3 #### I. Gas Transport ### A. Oxygen Transport - 1. Hemoglobin - a. Structural Properties - (1) empirical formula	0	(2) structural formula	
the Bronsted-Lowry definition.			
ionization of 0.005N acid that has a pH of 4. ### D. Buffers in General - 1. Sensitivity of living organisms to slight changes in hydrogen ion concentration - a. fluctuation of pH is very great with only small amounts of acid. - b. the necessity of a homeostatic system for maintaining the constancy of $[H^+]$ of body fluids - c. pll values of a variety of fluids associated with living organisms. - 2. Principles of Buffer Action - a. buffer system defined b. representing the conditions of a buffer system c. effects of adding OH and H+ d. interaction of conjugate acid-base pairs in buffer reactions 3. Use of Buffers in the Laboratory a. for making standard solutions of constant pH to use for colorimetrically determining the pH of unknowns. b. for maintaining a given pl necessary for the optimal activity of a reaction. c. for keeping pll constant in cell and tissue culture media. - 4. Determination of the pH of a Buffer System - a. the Henderson-Hasselbalch equation - 1) its derivation $$H_{3}O^{+} + OAc^{-}$$ step 1: $$K = \frac{[II_3O^+][OAc^-]}{[IOAc]}$$ step 2: rearranging the equation in terms of $[H_3O^+]$: $$K[HOAc] = [H3O+] [OAc-]$$ $$[H3O+] = K [HOAc]$$ $$[OAc-]$$ Complete steps 3, 4, and 5 for an exercise in algebra: step 3: step 4: step 5: step 6: - 2) significance of each term appearing in the equation: - a) since K is constant, therefore pK is constant. - b) salt/acid ratio as a determinant of a buffer system's pH - c) significance of a salt/acid ratio of 1. - 3) protection of a buffer system against pH changes - a) if a strong acid is added - b) if a strong base is added c) effectiveness of a buffer is based upon its ability to maintain a fairly constant salt/acid ratio in spite of addition of 11⁺ or 011⁻. 5. Sample problem demonstrating the action of a buffer: Compare the effects of adding 10^{-3} mole NC1 (0.03%g) to a dilute acid solution of 10^{-5} N and to a solution buffered with 0.175M Na $^{+}$ OAc $^{-}$ and 0.100M HOAc. Both solutions have an initial pH of 5. Before making the comparison, verify this by calculating the pH of each solution before the 10^{-3} mole HC1 is added. 1st: non-buffered system (10⁻⁵N HC1) initial pH = final pH = $\Delta pH_1 = pH_{initial} - pH_{final} =$ 2nd: buffered system (0.175M Na⁺OAc⁻ + 0.100M HOAc) initial pll = final pH = △ pll₂ = pH_{initial} - pll_{final} = Which system showed the smallest $\Delta\,\text{pH}$ on addition of 10^{-3} mole HC1?	DD		T1140
Physics "Fluids in Motion" Chapt. 8 pp. 211-215 Part I: Beyer and Williams, <u>College Physics</u> "Fluid Dynamics" Chapt. 11 pp 197-205 Part II: Geise, <u>Cell Physiology</u> "Colloidal Properties of Cells: Viscosity" Chapt. 4, pp 80-82. Beyer and Williams, <u>College Physics</u> "Fluid Dynamics" Chapt. 11 pp 206-207 Telfer and Kennedy, Biology of Organisms pp 251-252 Continued on next page. Part III. Schmidt-Neilsen, Animal Physiology, Chapt. 2 pp 26-31. Langley, <u>Homeostasis</u>, Chapter 5. Beyer and Williams <u>College Physics</u> "Fluid Dynamics" Chapt. 11, p. 207 Part IV. Solomon, "Pores in the Cell Membrane" Scientific American Dec. 1960 (#76). Holter, "How Things Get Into Cells" Scientific American Sept. 1961 (#96). Solomon, "Pumps in the Living Cell" Scientific American Aug. 1962 (#131). Robertson "The Membrane of the Living Cell" <u>Scientific American</u> April 1962 (#151) Hokin and Hokin "The Chemistry of Cell Membranes" Scientific American Oct. 1965 (#1022) Part I: BASIC DYNAMICS OF CIRCULATION IN PERIPHERAL BLOOD VESSELS #### PURPOSE: To study general aspects of peripheral circulation in a vertebrate animal and to determine some of the variables governing the flow-rate and flow-volume of blood in a closed system of vessels. #### MATERIALS: microscope stage micrometer fish petri dish glass pipette cotton slide and/or cover-slip stop-watch graph paper #### PROCEDURE: - 1. Read the procedure and questions carefully before beginning! - 2. Using a stage-micrometer, calibrate the distance between the teeth of the ocular micrometer in the eye-piece of your microscope. Why will this be necessary? - 3. Place a live fish in a petri dish of water just deep enough to cover the animal when it is placed on its side. Water may be removed or added as needed with the glass pipette. - 4. Gently place a water-soaked cotton-ball over the anterior two-thirds of the fish so that only the tail is exposed. This may take some time since your first attempts to subdue the fish are likely to fail! Once you succeed in placing the cotton over the fish, the weight should be enough to turn the animal on its side and hold it subdued in that position without harming it. If the fish is still able to escape, add more wet cotton. - 5. After you are sure that the fish cannot escape from under the wet cotton, gently drop a plastic cover-slip over the exposed tail-fin to keep it flat and stationary. If the weight of the cover-slip is not sufficient, use a glass-slide instead. - 6. Remove the stage-clips from your microscope and carefully place the petri dish on the stage, with the low-power objective lens in place. - 7. Observe the thin outer portion (fin-part) of the fish's tail. Locate a vessel containing a stream of blood that is moving away from the heart. After you have found such a vessel, begin the work that follows. Lab Investigation	Name	68 	
capillary is recognizable by the following characteristics: - a. a capillary's inner diameter is sufficiently small enough to permit the passage of only a single red blood cell at a time. - b. capillaries often lead from larger vessels at right angles or nearly right angles. - c. capillaries meander rather than pass straight through the tissues they nourish. - d. capillaries usually do not run parallel and adjacent to fin-rays and bones, but rather carry blood through the thin tissues between these structures. - e. at any given time, capillaries may or may not be carrying moving blood, depending upon whether the contractile cells they possess are dilated or constricted. The drawing below illustrates each of these characteristics: (large black star-shaped cells are chromatophores) Now answer the following questions. 7 Lab Investigation	Name		
between Poiseuille's statement and the conclusion drawn from the behavior of the faucet-and-hose model: 1st apparent contradiction: According to Poiseuille; P L but in the faucet-and-hose model, it was said that the longer the hose the lower the outlet pressure. The apparent inconsistency is resolvable by taking into account: Thus, the pressure P₁ at fixed point S₁ proportionately with each additional length of hose. Thus, for length 2L: and for length 3L: This is true because with each additional length increment, the resistence to flow and the pressure gradient between the faucet end and the outlet end becomes . But it is also true that: P₁ outlet P₂ outlet P₃ outlet Since Poiseuille was speaking of pressure at a fixed point and not the outlet pressure, his statement that pressure is directly proportional to the length is correct. 2nd apparent contradiction: Poiseuille states that $P \propto 1$ R^4 It is understandable that the pressure increases as the radius decreases, but why to the 4th power of the radius? Since flow is easier to measure than pressure, Poiseuille's statement of proportionality can be rearranged as follows: thus: $V = \mathcal{F}r^2$ L where \mathcal{F} and L are constant Let r = 1 cm and L = 1 cm Then $V_1 = \mathcal{F}(1 \text{ cm})^2$ (1 cm) = \mathcal{F} cm³ and $V_2 = \mathcal{F}(2\text{cm})^2$ (1 cm) = $4\pi\text{cm}^3$ But if the actual experiment is conducted it will be found surprisingly that $V_2 = 16 \ V_1$. Thus for every ml. coming out of the smaller tube, 16 ml will flow out of the larger. This follows because the radius is larger by a factor of 2 and $2^4 = 16$. Thus, $V_2 = 16$ cm³ Thus, the volume of fluid flowing through a vessel is described by the following statement of proportionality:	1	^~	
the circulatory system. Identify the drug, the site of action, and its specific effects on that site. - IV. Transport of Matter Across Membranes - A. Passive Transport across membranes in terms of kinetic-molecular theory - 1. Osmosis: The movement of water across cell membranes - a. Passage of water across articicial membranes - 1) semipermeable membranes - 2) selectively permeable membranes - b. Passage of water across cell membranes - 1) hypertonic and hypotonic solutions and their effects on cell volume - a) plasmolysis - b) deplasmolysis - 2) isotonic solutions - c. Derivation of an equation for osmotic pressure - 1) osmotic pressures of non-electrolytes - a) the thistle-tube osmometer b) difficulties encountered when attempting to measure osmotic pressures inside cells - c) the work of Pfeffer - 1) his experiment - 2) has data and observations - 3) the significance of his findings # PFEFFER'S DATA FOR OSMOTIC PRESSURE AT DIFFERENT CONCENTRATIONS OF SUCROSE	Concentration in Percent	Osmotic Pressure in Atmospheres	Osmotic Pressure Ratio to Concentration
0.35M. Assume that the following ideal conditions exist: - a. the vessel wall is permeable to water only and not to the solute particles - b. the solute is non-electrolytic - c. the system is at room temperature (22 $^{\circ}$ C) and at sea level. - d. the fluids surrounding the vessel contain no solute (zero molarity). Will water tend to enter or leave through the vessel wall? Show calculations which allow you to arrive at an answer. 1 atmosphere = 760 mm. Hg. IV A APPENDIX # TABLE OF APPENDICES	Logarithms: A Review APPENDIX A		---
0 004 0 0	4		
9805 9850	9894	9983	9
6946 6955 6964 6972 698	016 7024 7033 7042 7050 7059 706	185 7193 7202 7210 7218 7226 723	26, 72/3 7264 7272 7300 7308 731 348 7356 7364 7372 7380 7388 739
--	--	---	--
--	--	--	---
---	---	---	---
3 ea	1		
3959 4000 4040 58 6 | 9 (444) (345) (552) (256) (2610) (554) (86) 8 | # 3349 3328 3327 3365 3404 3443 71 E | 2867 .2905 .2943 .2981 .3019 .3057 73 | 2679 2717 2754 2792 2830 2867 74 | .2309 .2345 .2382 .2419 .2456 .2493 78 | . 1944 . 1980 . 2016 . 2018 . 2019 . 2125 . 78 . 3
. 2026 . 2019 . 2019 . 2235 . 2272 . 2305 . 77 . 3 | 1763 1799 1835 1871 1908 1944 75 | 1405 .1441 .1477 .1512 .1548 .1584 81 8
 | 1228 1263 1229 1834 1376 | 0875 .0910 .0945 .0981 .1016 .1051 84 | 0.655 0.734 0.584 0.629 0.664 0.688 0.689 0.699 | 0349 0384 0419 0454 0437 0524 87 4 | 0635 .0070 .0105 .0140 .0175 88
.0209 .02 44 .0279 .0314 .0349 88 4 | 12' 24' 36' 48' 80' | | | 60 48 38 24 12 0° | 5 1,020 1,007 1,014 1,021 1,029 1,035 44 96 | \$ 19325 19391 19457 19528 19590 19657 48 881 | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 \$39, 6451 .8511 .6571 .8632 .6693 49 85 | 9 (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | | 5 7062 7054 7107 7159 7212 7265 54 88 81 767 7310 7310 81 | | M. CHARL BUREA (MASE) BUREA (MASE) DESCRIPTION (M. 170) AND | 6000 6056 6104 6150 6200 6247 58 78 | 0 5774 5820 5867 59 (4 586) 6689 58 75 | 8 5317 5362 5407 5452 5436 5528 5528 61 78 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 2 F000 1/00 1/40 40 1 0004 F000 04 /0 | The state of s | 2 1.014.6 1.000 4.027 8.45.0 4.004 4.000 00 00 00 00 00 00 00 00 00 00 00 00 | 1 1559 3579 3919 3959 4000 4040 58 68 | 0 (345) (345) (582) (356) (3610) (3540) 70 54 | # 3249 3256 3327 3365 3404 3443 71 88 | 2867 .2905 .2943 .2981 .3019 .3057 73 61 | 2679 2717 2754 2792 2530 2867 74 BD | 2309 2345 2382 2419 2456 2493 76 58 | .1944 .1980 .2016 .2053 .2089 .2126 18 86 | 1763 1799 1835 1871 1908 1944 78 55 | .1405 .1441 .1477 .1512 .1548 .1584 81 53
.1584 .1525 .1555 .1591 .1727 .1763 80 54 | 1051 1086 1122 1157 1192 1228 83 51 1228 1263 1269 1294 1394 1396 1495 82 52 | 0875 0910 0945 0981 1016 1051 84 50 | 0524 .0559 .0594 .0629 .0664 .0659 .8750 .0649 | 0349 0384 0419 0454 0433 0524 87 47 | .0209 .0244 .0279 .0314 .0349 88 46 | 12' 24' 35' 48' 59' | | | 60 48 36 24 12 0 6 | 5 1,000 1,007 1,014 1,021 1,029 1,035 44 96 | \$ 19325 1939 19457 9527 9590 9657 46 88 23.64 (| C 1000 000 000 000 000 000 000 000 000 0 | 0 8391 .6451 .8511 .8571 .8632 .8693 48 .85 11 43 | 9 00000 00000 00000 00000 00000 00000 0000 | The state of s | 5 7052 7054 7107 7159 7212 7225 54 80 5.67
R 7765 7310 7373 7477 7437 7536 69 81 6 314 7 | | M. 1999年 - MARA MAR | 1.0009 6056 6104 6152 o200 6247 58 78 4.011 | 0 5774 5820 5867 5994 5951 6689 58 75 3732 | 8 (53)7 (5362 (5407 (5452 (5458 (5543 61 78 3.57) | 1 | 1977 1077 1084 1000 1000 1000 to 71 2 000 1000 to 71 2 000 1000 1000 1000 1000 1000 1000 | | 20 1014 1010 14120 1410 1410 1410 00 00 00 00 00 00 00 00 00 00 00 00 0 | 1 1555 3879 3919 3959 4000 4040 58 86 2 246 | 9 (34/3) (34/5) (50/22) (32/6) (30/6) (50/4/6) (46/5) (50/22) (32/6) (30/6) (50/4/6) (46/6) (50/4/6) (50 | # 3249 3288 3327 3365 3404 3443 71 62 1965 | 2867 2905 2943 2981 3019 3057 73 81 1.854 | 2679 2717 2754 2792 2630 2867 74 80 1.732 | 2309 2345 2382 2419 2456 2493 78 58 1,500 | . 3124 . 1980 . 2016 . 2003 . 2089 . 2126 . 78 . 86 1.483
. 3124 . 3152 . 2199 . 2235 . 2272 . 2207 . 78 . 86 1.483 | 1763 1799 1835 1871 1908 1944 75 55 1 428 | . 1405 .1441 .1477 .1512 .1548 .1584 81 53 1.327
. 1584 . 1520 . 1555 . 1691 .1727 . 1763 80 .54 1.376 . | 1051 1086 1122 1157 1192 1128 83 51 1.235
1225 1263 1299 1334 1376 1495 82 52 1.286 | 0875 .0910 .0945 .0981 .1016 .1051 84 50 1.192 | 0524 0559 0594 0629 0664 0699 86 48 1.111
0699 0734 0769 0605 6240 0675 25 48 1.111 | 0349 0384 0419 0454 0457 0524 87 47 1072 | .0035 .0070 .0105 .0140 .0175 88
.0209 .0244 .0279 .0314 .0349 88 46 1.036 | 12' 24' 36' 48' 80' | | | 60 42 38 24 12 0 1 60 | 5 1,000 1,007 1,014 1,023 1,029 1,035 44 86 | \$ 19325 1939 19457 9522 19390 19637 48 186 23.64 21 82
\$ 1977 1978 19780 1997 1979 1970 47 187 1970 1977 | C. 11.11. 0.11.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.00 | 0 839; 648; 8511 687; 8632 8693 48 85 11 43 11 91 | 9 (2017) (2017 | TO THE COURT OF TH | 5 7052 7054 7107 7159 7212 7265 54 80 5.671 5.769
R 7765 7319 7373 7427 7431 7536 63 81 6 314 6 160 | | CONTRACTOR OF THE O | cope 6056 6104 6152 6200 6249 58 78 4.011 4.071 | 0 5774 5820 5867 5914 5451 6639 58 78 3732 2785 | 8 (53)7 (53)82 (54)07 (54)52 (54)83 (55)3 (61) 78 (3.57) (3.51) | | 2 -0000 3/00 -1/40 4/31 -0004 -00/0 54 70 0/34 1/34 | | 2 1014 1025 14:20 14:00 14:04 10:05 50 60 0:05 10:05 10:05 | 1 5559 3879 3919 3939 4030 4040 58 86 2,246 2,267 | 9 (343) (345) (552) (356) (360) (3540) (8 54 105) (105) (105) (105) (105) | # 3249 3288 3327 3365 3404 3443 71 BB 1963 1980 | 2867 2905 2943 2981 3019 3057 73 61 1.854 1.819 | 2679 2717 2754 2792 2630 2867 74 80 1.732 | 2309 2345 2382 2419 2456 2493 78 58 1,500 | . 3124 . 1980 . 2016 . 2003 . 2089 . 2126 . 78 . 86 1.483
. 3124 . 3152 . 2199 . 2235 . 2272 . 2207 . 78 . 86 1.483 | 1763 1799 1835 1871 1908 1944 75 55 1 428 | . 1405 .1441 .1477 .1512 .1548 .1584 81 53 1.327
. 1584 . 1520 . 1555 . 1691 .1727 . 1763 80 .54 1.376 . | .1051 .1086 .1122 .1157 .1192 .1228 83 51 1.235 .1228 1263 .1263 .1269 .1334 .1376 .1405 82 52 1.268 | 0875 .0910 .0945 .0981 .1016 .1051 84 50 1.192 | 0524 0559 0594 0629 0664 0699 86 48 1.111
0699 0734 0769 0605 6240 0675 25 48 1.111 | 0349 0384 0419 0454 0457 0524 87 47 1072 | .0035 .0070 .0105 .0140 .0175 88
.0209 .0244 .0279 .0314 .0349 88 46 1.036 | 12' 24' 36' 48' 80' | | | 60' 48' 36' 24' 12' 0' 1 60' 48' 35 | 5 1,000 1,007 1,014 1,023 1,029 1,035 44 86 | \$ 19325 19391 19457 19529 19590 19657 48 188 28.64 131 82 3
 25 | CONTROL OF THE STATE STA | 0 8391 6451 8511 6571 8632 6693 43 85 11 43 11 91 1 | 3、 1917年, 1917年 | | 5 7092 7054 7107 7158 7212 7265 54 88 5.671 5.789 5 | | 0.004 0.0044 0.0094 0.0044 0.0004 0.740 0.00 40 40 0.00 44 0.004 4 | 1 0000 6056 6104 6150 0200 6247 58 78 4.011 4.071 4 | 8 5774 5820 5867 5994 5451 6820 58 78 3,732 2,765 3 | 8 (Sa)7 (S362 (S407 (S452 (S438 (S543 6) 78 3.57) 3.512 (3.57) | The state of s | 2 - 1000 - 1/00 - 1/40 - 40/00 - 1/30 | TABLE CONTROL | 2 1014
1015 1420 1410 14101 1111 BY BY 1474 YOUR ON | 1 5559 3879 3919 3959 4000 4040 58 86 2,246 2,267 2 | 9 (344) (345) (352) (356) (360) (354) 70 (84) (557) (767) 2 (| # 3249 3288 3327 3365 3404 3443 71 83 1,963 1,980 1 | 2867 2905 2943 2981 3019 3057 73 81 1.854 1.819 1 | >0 | 2309 2345 2382 2419 2456 2493 76 58 1.500 1 613 1 | . 1944 . 1980 . 2016 . 2033 . 2039 . 2126 18 00 1.483 1.494 1 | 1763 1799 1835 1871 1908 1944 75 55 1 428 1 427 1 | . 1405 .1441 .1477 .1512 .1548 .1584 81 - 53 1.327 1.337 1
.1584 .1520 .1655 .1691 .1727 .1763 80 .54 1.376 1.327 1. | . 1051 . 1086 . 1122 . 1157 . 1192 . 1228 83 . 51 1.235 1.244 1
. 1228 . 1263 . 1299 . 1334 . 1376 . 1495 82 . 52 1.260 1.260 1. | 0875 0910 0945 0981 1016 1051 84 50 1.192 1.200 1 | .0524 .0559 .0594 .0629 .0664 .0699 86 48 .111 1.118 1 | 0349 0384 0419 0454 0487 0524 87 47 1.072 1 989 1 | _0209_0244_0279_0314_0349_88_46_1.036_1.043_1 | 12' 24' 36' 48' 80' 15 0' 12' 2 | | | 60 48 36 24 12 0 1 60 48 3 | 5 1,000 1,007 1,014 1,021 1,020 1,035 44 86 | \$ 19325 19391 19457 19529 19590 19657 48 188 23864 13182 13580 4
 1977 1977 1978 1978 1977 1977 1978 188 188 23864 13182 13580 4 | C. 1.13 | 0 839, 648, 8811 687, 8630 869 49 85 11 43 11 91 12 43 | 9 00.11 01.00 01.0 | | 5 7002 7054 7107 7158 7212 7225 54 88 5.471 5.769 5.912 n | | 6. 04904 05544 6594 (6544 68904 6745 88 120 4705 4165 44072 6 | cccc 6056 6104 (6152 6200 624) 58 78 4.011 4.071 4.134 | 8 5774 5520 5867 59 (4 545) 6539 55 75 3,732 2,755 3,839 | 8.5377 5362 5407 5452 5438 5543 61 73 3.577 3.512 3.354 | CONTRACTOR | 2 - FEB C - 1/50 - 1/50 A 7000 ADA ADA FEB 2 1 2 001 1 220 2010 | | 2 1734 1756 1827 1824 1831 1835 183 183 183 183 183 183 183 183 183 183 | 1 5539 3879 3919 3959 4000 4040 58 86 2.246 2.267 2.287 | 9 (544) (548) (552) (356) (360) (554) (8 54) (550) (267) (267) (367) (367) (367) (367) (367) (367) (367) (367) | # 3249 3288 3327 3365 3404 3443 71 B# 1963 1980 1997 | 2867 . 2905 . 2943 . 2981 . 3019 . 3057 . 73 . 61 1.804 1.819 1.834 | 2679 2717 2754 2792 2530 2857 74 ED 1732 1746 1750 | 2309 2345 2382 2419 2456 2493 76 58 1.500 1 613 1.626 | . 1944 . 1980 . 2016 . 2015 . 2089 . 2125 . 78 . 88 1. 483 . 1. 494 . 1.505 | 1763 1799 1835 1871 1908 1944 75 55 1 428 1 439 1 450 | . 1405 .1441 .1477 .1512 .1548 .1584 81 53 1.327 1.337 1.347
.1584 .1520 .1555 .1691 .1727 .1763 80 54 1.376 1.327 1.327 | .1051.1086.1122.1157.1192.1228.83.51.1235.1244.1253.
.1228.1263.1299.1334.1376.1495.82.52.1268.1.269.1.299. | 0875 0910 0945 0981 1016 1051 84 50 1.192 1.200 1.209 | 0524 0559 0594 0629 0664 0699 86 48 1111 1118 1126 0669 0679 1764 1776 0669 0669 0679 | 0349 0384 0419 0454 0433 0524 87 47 1.072 1.088 1.088 | _02090244027903140349_88_46_1.036_1.043_1.050_ | 12' 24' 38' 48' 89' 15 0' 12' 24' | | | 60. 42 38. 24 12 0. 18. 38. | 5 1.000 1.007 1.014 1.023 1.029 1.035 44 96 | \$ 19325 19391 19457 19529 19560 19657 48 188 23:64 31 82 35:80 40 92
\$ 1977 1976 1976 1977 1977 1979 47 188 23:64 31 82 35:80 40 92 | C. 11.19 0.109 0.000 0.000 0.000 0.100 0.0 | 0 8391 .8451 .8511 .8571 .8632 .8633 43 .85 11 43 11 91 12 43 13 00 | 5 00 C | | 5 7002 7054 7107 7158 7212 7265 54 88 5.671 5.769 5.912 6.041
R 7765 7779 7777 7477 7471 7576 69 81 6 314 6 168 6 672 6 779 | The second secon | 5, 6494 6544 6594 6594 6554 6694 6745 56 12 4,705 4,675 4,672 4,979 | cccc 6056 6104 6152 6200 6249 58 78 4.011 4.071 4.134 4.198 | 8 5774 5626 5867 5914 5351 6669 68 75 3732 3735 3.839 3.695 | 8, 5317 5362, 5407, 5452, 5438, 5543, 61, 78, 3,577, 3,512, 3,334, 2,356 | CONTRACTOR OF THE O | 2 - F000 - 1/50 - 1/50 - 4/50 - 4/50 - 1/50 -
1/50 - 1/50 | | 2 1734 1756 1877 1876 1877 1876 1871 1875 187 187 1877 1877 1877 1877 1 | 1 5559 3879 3919 3959 4000 4040 58 86 2246 2267 2289 2311 | 9 (544) (548) (5)22 (356) (360) (5)40 (8 54 705) (2)62 (2)62 (2)63 (3)64 (3)65 | # 3249 3288 3327 3365 3404 3443 71 83 1.563 1.580 1.597 2.015 | 2867 . 2905 . 2943 . 2981 . 3019 . 3057 73 . 61 1.854 1.819 1.834 1.850 | | 2309 2345 2382 2419 2456 2493 76 58 1,500 1 613 1.626 1.638 | . 1944 - 1980 - 2016 - 2033 - 2069 - 2125 - 78 - 88 - 1,483 - 1,594 - 1,507 - 1,517 - 1,518 - | 1763 1799 1835 1871 1908 1944 75 55 1 428 1 439 1 450 1 461 | . 1405 .1441 .1477 .1512 .1548 .1584 81 - 53 1.327 1.337 1.347 1.356
. 1564 .1566 .1555 .1561 .1767 .1763 80 -54 1.376 1.367 1.367 1.467 | . 1051 . 1086 . 1127 . 1157 . 1192 . 1228 83 - 51 1. 235 1. 244 1. 253 1. 262 . 1228 1263 1. 269 1. | 0875 .0910 .0945 .0981 .1016 .1051 84 50 1.192 1.200 1.209 1.217 | 0524 0559 0594 0629 0664 0699 86 48 1111 1118 1126 0669 0679 1734 1736 1736 1737 0669 | 0349 0384 0419 0454 0433 0524 87 47 1.072 1.088 1.088 | _02090244027903140349_88_46_1.036_1.043_1.050_ | 12' 24' 36' 48' 80' 15 0' 12' 2 | | | 60 48 36' 24' 12 0' 1 60 48 35' 2 | 5 1.000 1.007 1.014 1.020 1.020 1.030 44 96 | 3 9325 9451 9457 9522 9590 9657 48 88 23.64 3182 35.80 40 92 47.7 | COUNTY OF A COUNTY OF THE COUNTY AND THE COUNTY OF COU | 0 839, 6481 8811 8871 8632 8693 48 85 11 43 11 91 1243 13 91 13 6 | 5 2013 1964 27905 3014 6015 1963 3020 1934 1935 1934 1935 1935 1935 1935 1935 1935 1935 1935 | The second secon | 5 7002 7054 7107 7159 7212 7265 54 80 5.671 5.789 5.912 6.941 6.17
8 7765 7339 7479 7477 7431 7536 69 81 6 314 6 365 6 77 6 777 6 92 | The second secon | 50,040,050,050,050,050,050,050,050,050,0 | 6009 6056 6104 6152 6200 6247 58 78 4.011 4.071 4.134 4.198 4.26 | 8 5774 5820 5867 5914 5951 6699 68 78 3732 2785 3,639 3,695 3,695 | 8. 53) 7. 5352 5407 5555 5432 5438 5543 61 78 3:57: 3:512 5:344 3:356 3:44 | The state of s | 2 - 1907 1707 1708
1708 | The control of co | 2 1734 1754 1877 14720 14753 14764 1477 55 50 57 71876 1787 71874 71877 71878 1787 71878 1878 | 1 5559 3679 3919 3959 4000 4040 58 86 2.246 2.267 2.289 2.311 2.23 | 9 (544) [545] [552] [556] [360] [554] 70 64 [1050] [707] 2057 [2057] 2057 [205] 2070 | / 3349 3288 3327 3365 3404 3443 71 BB 1963 1983 1997 2.015 2.03 | 2867 .2905 .2943 .2981 .3019 .3057 73 61 1.804 1.819 1.834 1.830 1.83 | | 2309 2345 2382 2419 2456 2493 76 58 1.500 1613 1.626 1.638 1.65 | 152. 1542. 152. 152. 152. 1543. 157. 157. 157. 157. 1503. 1503. 1504. 1503. 1503. 1503. 1503. 1503. | 1763 1799 1835 1871 1908 1944 79 55 1 428 1 439 1 450 1 461 1 4 | . 1405 .1441 .1477 .1512 .1548 .1584 81 - 53 1.327 1.337 1.347 1.356 1.37
.1584 .1566 .1555 .1691 .1777 .1766 80 - 54 1.376 1.367 1.367 1.467 1.46 | . 1051 . 1086 . 1122 . 1157 . 1192 . 1228 83 | .0875 .0910 .0945 .0981 .1016 .1051 84 50 1.192 1.200 1.209 1.217 1.22 | 0529 0734 0754 0624 0664 0675 0675 0875 0875 0711 1111 11126 1126 1137 1138 | .0349 .0384 0419 .0454 .0457 .0524 87 47 1.072 1.060 1.088 1.095 1.10 | .0209 .0244 .0279 .0314 .0349 88 46 1.036 1.043 1.050 1.058 1.04 | 12' 24' 38' 48' 80' 15' 0' 12' 24' 3 | | | 60' 48' 36' 24' 12' 0' 1 60' 48' 35' 24' 1 | 5 1.620 1.607 1.014 1.621 1.028 1.635 44 86 | 3 (932) (939) (9457 -9529 (939) 9637 48 88 2364 3) 82 3360 40 92 47.74 5
1 12. | C. 1997 (1997) (1998) (1997) (| 0 S291 .6451 .8511 .6571 .8632 .6693 43 .65 11 43 11 91 12 43 13 00 13 62 1 | 9 (2013) 1969 (7926) 17926 (1963) 80290 (1984) 803 (198 | | 5 7002 7054 7107 7158 7212 7265 54 88 5.671 5.769 5.912 6.041 6.174 6 | The second secon | 5 (5194 5544 5594 5594 5594 5694 6745 56 (70 4.705 4.676 4.672 4.979 0.050 0.051) | 5009 6056 6104 6152 5200 6249 58 78 4.011 4.071 4.134 4.198 4.264 4 | 8 5774 5829 5867 5994 5985 6889 58 78 3732 3785 3,839 3,835 3,835 4,55 | 8. 5317 5362 5407 5452 5438 5543 61 78 3.57 3.512 3.354 2.393 3.442 3 | The state of s | 2 - 100 - 1760 -
1760 - | | 2 1734 1756 1877 1876 1877 AND AND 1718 57 68 787 7876 7576 7877 7877 7877 787 | 1 5559 3879 3919 3959 4000 4040 58 86 2246 2267 2289 2311 2223 2 | 9 (544) (548) (5)22 (326) (360) (5)40 (8 | # 3249 3288 3327 3365 3404 3443 71 63 1963 1980 1997 2.015 2.032 2 | 2867 . 2905 . 2943 . 2981 . 3019 . 3057 73 . 81 1.854 1.819 1.834 1.850 1.855 1 | | 2309 2345 2382 2419 2456 2493 76 58 1,500 1,613 1,626 1,638 1,651 1 | . 1944 1980 2016 2033 2039 2126 78 88 1.483 1.494 1.505 1.517 1.528 | 1763 1799 1835 1871 1908 1944 78 55 1 428 1 439 1 450 1 461 1 472 | . 1405 .1441 .1477 .1512 .1548 .1584 81 | . 1051 . 1086 . 1122 . 1157 . 1192 . 1228 83 51 1.235 1.244 1.253 1.262 1.271 1
. 1223 1263 . 1299 . 1334 . 1376 . 1495 82 52 1.286 1.289 1.299 1.308 1.316 1 | 0875 .0910 .0945 .0981 .1016 .1051 84 50 1.192 1.200 1.209 1.217 1.226 1 | 1821 1841 1851 1851 1852 1853 1854 1855 1854 1855 | .0349 .0384 0419 .0454 .0433 .0524 8] 47 1.072 1.665 1.088 1.095 1.103 1 | _0209_0244_0279_0314_0349_88_46_1.036_1.043_1.050_1.058_1.065_1 | 12' 24' 36' 48' 80' 15' 0' 12' 24' 36' 48' | | | 60' 48' 36' 24' 12' 0' 1 60' 48' 36' 24' 12' COT | 5 1.620 1.607 1.014 1.621 1.028 1.635 44 86 | 3 (932) (939) (9457 -9529 (939) 9637 48 88 2364 3) 82 3360 40 92 47.74 5
1 12. | C. 1997 (1997) (1998) (1997) (| 0 S291 .6451 .8511 .6571 .8632 .6693 43 .65 11 43 11 91 12 43 13 00 13 62 1 | 9 (2013) 1969 (7926) 17926 (1963) 80290 (1984) 803 (198 | | 5 7002 7054 7107 7158 7212 7265 54 88 5.671 5.769 5.912 6.041 6.174 6 | The second secon | 5. 04.94 05.44 65.94 05.44 06.94 04.3 06.94 07.45 06. 120 4.705 4.075 4.072 4.972 3.050 0.043 0.050 0.045 | 5009 6056 6104 6152 5200 6249 58 78 4.011 4.071 4.134 4.198 4.264 4 | 8 5774 5828 5867 5914 5951 6009 58 75 5732 5735 3839 3895 3892 4.901 | 8. 5317 S352 5407 5450 5438 5543 61 78 3.57 3.512 3.354 3.398 3.442 3.457 | The state of s | 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1. A | 2 1734 1756 4822 4823 4835 4834 1718 57 58 785 7876 7876 7876 7877 7878 7878 | 1 5559 3879 3919 3959 4000 4040 58 68 2.246 2.267 2.289 2.311 2.233 2.384 | 9 (344) [345] [352] [356] [356] [3540] [3540] [46 [44] [1550] [1557] [257] [257] [258] [257] [258] [257] [258] | / 33249 | 2867 . 2905 . 2943 . 2981 . 3019 . 3057 . 73 . 61 1.804 1.819 1.834 1.850 1.855 1.881 | 2679 2717 2754 2792 2630 2857 74 ED 1732 1746 1760 1775 1789 1864 | 2309 2345 2382 2419 2456 2493 76 58 1500 1613 1626 1638 1.651 1.664 | . 1944 - 1980 - 2016 - 2015 - 2069 - 2126 - 78 - 88 1.483 - 1.494 - 1.505 - 1.517 - 1.528 - 1.548
- 2.184 - 2.185 - 2.184 - 2.235 - 2.272 - 2.209 - 77 - 67 - 1.435 - 1.512 - 1.314 - 1.576 - 1.513 - 1.548 | 1763 1799 1835 1871 1908 1944 75 55 1 428 1 439 1 450 1 461 1 472 1 463 | . 1405 .1441 .1477 .1512 .1548 .1584 &1 53 1.327 1.337 1.347 1.356 1.366 1.376
.1584 .1590 .1655 .1691 .1797 .1763
&0 54 1.376 1.387 1.397 1.497 1.418 1.428 | . 1051 . 1086 . 1122 . 1157 . 1192 . 1228 83 . 51 1.235 1.244 1.253 1.262 1.271 . 1228 1228 1263 . 1269 . 1334 . 1376 . 1405 82 . 52 1.280 1.260 1.269 1.299 1.308 1.316 | 0875 .0910 .0945 .0981 .1016 .1051 84 50 1.192 1.200 1.209 1.217 1.226 1.235 | 0524 .0524 .0524 .0524 .0624 .0654 .0659 &6 48 1.111 1.118 1.126 1.134 1.142 1.150 | 0349 0384 0419 0414 0433 0524 87 47 1072 1083 1088 1095 1103 1.111 | _0209_0244_0279_0314_0349_88_46_1.036_1.043_1.050_1.058_1.065_1 | 12 24 36 48 80 15 0' 12' 24' 36' | | Catalog No. 592 #### OPERATION OF SPECTRONIC 20 FOR COLORIMETRY - 1. Rotate the wavelength control until desired wavelength is indicated by the wavelength scale. - 2. Turn on power switch, also called zero control, clockwise; the pilot light will glow. Allow five minute warm-up. With zero control bring meter needle to "O" on the Percent Transmittance scale of meter. - 3. Insert test tube 1/2 full of distilled water into sample holder. Close adapter cover. Rotate Light Control until meter reads "100" on the Percent Transmittance scale. - 4. Insert unknown sample in place of water or standard and read percent transmittance directly from meter. - 5. It is best to turn the light control counterclockwise before changing to another wavelength. #### IMPORTANT: It is necessary to repeat step 3 each time a different wavelength is used. When operating on a fixed wavelength check periodically for meter "drift" from 100%. #### LA PINE 203-92 PORTABLE BATTERY OPERATED DI METER #### BATTERY CHECK - 1. Set the temperature COMPENSATOR KNOB to BATTERY CHECK. - 2. Turn the FUNCTION SWITCH to ON. - 3. Turn the ASYMMETRY CONTROL KNOB until the black meter needle reads 7. - 4. Turn the FUNCTION SWITCH back to <u>BATTERY CHECK</u>. As long as the black meter needle is on or to the right of the red battery check line on the meter scale panel the batteries are good. If the needle moves to the left of the battery check line replace one or the other or both dry cells and perform the battery check routine again until a good reading is obtained. # MOUNTING THE ELECTRODE Position the electrode support arm by loosening the locking nut, moving the arm to the desired position, and tightening the nut. (When storing the pll meter loosen the nut and move the arm counterclockwise toward the electrode connection.) Connect the combination electrode to the instrument by slipping the connector on the electrode lead over the connector on the case and turning it clockwise until it locks. To attach the electrode clamp slip it over the lead then slide it down over the upper (smaller diameter) plastic head of the electrode. Do not attempt to snap the electrode holder onto the electrode. Keep the electrode filled with electrode filling solution to a point about 1/4" below the vent hole when the electrode is in a vertical position. To fill the electrode remove the vent plug and add electrode filling solution with the dropping pipet. Replace the vent plug until use. # STANDARDIZATION When standardizing the pH meter use a buffer solution close to the pH of the sample, preferably within 2 pH units of the sample pH. The buffer solution should be at or near the temperature of the sample solution. - 1. Turn the FUNCTION SWITCH to ON. - 2. Set the temperature COMPENSATOR to the temperature of the buffer solution. - 3. Open the vent hole on the electrode. The vent hole should always be open when the electrode is being used. Do not lose the rubber plug as it must be replaced when the electrode is not in use. - 4. Rinse the end of the electrode with distilled water. - 5. Immerse the electrode in the buffer solution. - 6. Turn the FUNCTION SWITCH to READ. - 7. Using the ASYMMETRY CONTROL set the black meter needle to the pil value of the buffer solution. - 8. Turn the FUNCTION SWITCH back to ON. - 9. The black meter needle will move off the value at which it was set by the asymmetry control. Set the red dead pointer to coincide with the black meter needle. As long as the pl! metter is not turned OFF it will not be necessary to restandardize with the buffer solution. Simply set the function switch to ON and match the black meter needle to the red pointer using the asymmetry control. - .10. Go to measurements procedure. #### **MEASUREMENT** ## PH MEASUREMENT - 1. Clean the electrode with distilled water. - 2. Immerse the electrode in the sample solution. - 3. Turn the FUNCTION SWITCH to READ and read pH value. Then return to ON position when finished. ## MILLIVOLT MEASUREMENT - 1. The 203-95 platinum-calomel combination electrode must be used to make millivolt measurements. The 203-94 combination electrode furnished with the instrument is not suitable. - 2. Clean the electrode with distilled water and immerse it in the sample solution. - Turn the temperature COMPENSATOR KNOB counterclockwise until it operates the snap switch and points to MILLIVOLTS. - 4. Turn the FUNCTION SWITCH to ON. - 5. Using the ASYMMETRY CONTROL set the black meter needle to read 0 millivolts. - 6. Turn the FUNCTION SWITCH to READ and read millivolt value. 342 CENCO 021662 Electronic pH Meter 343 ACID - BASE INDICATORS | Diagram
No. | Indicator | Color Change with Increasing pH | pH Range | |----------------|------------------------|---------------------------------|-------------| | 1. | Methyl Violet | | 0 - 2.0 | | 2. | Thymol Blue | red to yellow | 1.2 - 2.8 | | 3. | Bromphenol Blue | yellow to blue | 3.0 - 3.6 | | 4. | Methyl Orange | red to yellow | 2.9 - 4.0 | | 5. | Bromcresol Green | yellow to blue | 3.8 - 5.4 | | 6. | Methyl Red | red to yellow | 4.4 - 6.0 | | 7. | Bromphenol Red | | 5.2 - 6.8 | | 8. | Bromthymol Blue | yellow to blue | 6.0 - 7.6 | | 9. | Phenol Red | yellow to red | 6.8 - 8.4 | | 10. | Cresol Red | | 7.2 - 8.8 | | 11. | Thymol Blue | | 8.0 - 9.6 | | 12. | Phenolphthalein | colorless to red | 8.3 - 10.0 | | 13. | Alazarin Yellow R. | yellow to violet | 10.1 - 12.0 | | 14. | Indigo Carmine | blue to yellow | 11.6 - 13.0 | | 15. | 1, 3, 5 - Trinitrobena | zene colorless to orange | 12.0 - 14.0 | APPENDIX I # OPERATION OF THE OSTWALD VISCOSIMETER #### DESCRIPTION: Since viscosity is a measure of resistence to flow, the viscosity of a given fluid will be proportional to the time it takes the fluid to flow through a tube of sufficiently small diameter. Since viscosity varies directly with temperature, some provision must be made to keep the temperature of the fluid constant during the flow. · A U-shaped tube suspended vertically in a constant-temperature waterbath could serve as a primitive viscosimeter. By introducing a fluid into one of the arms, measuring the time it takes the fluid to reach the bottom of the tube and comparing this time to those for other fluids, one could obtain its relative viscosity. The Ostwald viscosimeter is a more refined version which permits us to determine what is known as the kinematic viscosity. By referring to the figure shown in this appendix, it can be seen that the Ostwald viscosimeter is a U-shaped tube which contains a section of capillary in one of its arms and the appropriate reservoirs for delivering and receiving a measured volume of fluid to and from the capillary. The various dimensions of the Ostwald viscosimeter and their spacing relative to one another are such as to correct for a number of errors that otherwise would have to be taken into consideration in viscosity determinations. What the sources of these errors are and how the design of the viscosimeter corrects for them is quite complex. Here we shall only go into the theory governing its use. ### THEORY: Since we are dealing with a case of viscous flow through a capillary, Poiseuille's equation gives the quantity V, which flows through during time t: $$V = \frac{\pi PR^4 t}{8 \ln L}$$ An expression for P, the pressure exerted by the liquid due to its weight is obtained as follows: $$P = F/A = mg/A$$ where g is acceleration due to gravity acting on the column of liquid. Substituting $$D_mV$$ for m: $$P = \frac{D_mVg}{A}$$ where $D_m = mass density$ Substituting Ah for V and then cancelling the A's: $$P = \frac{D_m Ah g}{\Lambda} = D_m hg$$ where h = the mean leveldifference of the liquid (variations in the level difference throughout the running happen to have no effect on the measurement.) This value for P is now substituted into Poiseuille's equation: $$V = \frac{\pi^{D_m hgR^4 t}}{8 \pi L}$$ $V = \frac{\pi D_m hg R^4 t}{8 \pi L}$ where g, R and L are constant V is a fixed volume and h is calculated as the mean level difference. Rearranging the latter so as to collect all constant values on one side, an expression can be obtained for what is defined as KINEMATIC VISCOSITY: $$\mathcal{M}/D_{m} = \left(\frac{\eta \log R^{4}}{8VL}\right) t$$ Since everything appearing in the brackets is constant: $$n_{D_{m}} = kt \qquad \text{where k is in cm}^{2}/_{\text{sec}}^{2}$$ $$\left(\frac{hgR^{4}}{VL} = \frac{cm}{cm^{3}} \cdot \frac{cm}{cm^{2}} \cdot \frac{cm^{4}}{cm} = \frac{cm^{2}}{sec^{2}}\right)$$ Hence a measurement of the time of emptying the upper reservoir of the volume V, determines the kinematic viscosity $\dot{\mathcal{N}}/D_{m}$, once k is known. The constant k can be established for a particular viscometer by measuring the flow-time of water or some other liquid of known viscosity and density: $$k_{H_2O} = \frac{\pi}{tD_m} = \frac{0.0089 \text{ poises}}{t \text{ in secs } \cdot 1 \text{ gram/}_{cm}}$$ Then to obtain \mathcal{N} : $$\mathcal{N} = ktD_{m} \qquad \text{where } \mathcal{N} \text{ is in poises}$$ $$\left(cm^{2} / sec^{2} \cdot \frac{sec}{1} \cdot \frac{gram}{cm^{3}} = \frac{gram}{sec-cm} = poise \right)$$ #### PROCEDURE FOR DETERMINING VISCOSITIES: The following procedure is run first with a volume of standard in order to determine k, and then with an equivalent volume of fluid whose viscosity is to be determined. - 1. A volume of fluid is measured out in introduced through tube I to bulb A. - 2. The
viscosimeter with the sample inside is clamped vertically to a ringstand and immersed in a constant temperature water bath until the desired temperature is obtained. - 3. The fluid is raised up into tube II by suction until the bottom of its upper meniscus is just on the B mark. - 4. Removal of suction by releasing the index finger from tube I allows the fluid to begin its flow through the capillary and the time required for the meniscus to move from the B mark to the C mark is measured in seconds with a stop-watch. - 5. The constant k is determined by measuring the time it takes for a given volume of standard to run through the capillary and then plugging this value into the following equation: $$k = \frac{h_{12}^{6} \text{ at}^{25}^{\circ}\text{C}}{\text{tD}_{m}}$$ The viscosity of an equivalent volume of unknown fluid is then given by: $$\mathcal{N} = ktD_m$$ | | TABLE OF VISCOSITY STANDA | | |-------------------|---------------------------|----------------------------------| | Name of Substance | Mass Density | Viscosity in Centipoises at 25°C | | Diethyl ether | 0.71 | 0.22 | | Ethyl alcohol | 0.79 | 1.20 | | 1120 | 1.00 | 0.89 | | Ethylene glycol | 1.12 | 14 | | Olive oil | 0.92 | 67 | | Glycerol | 1.26 | 950 | The densities for aqueous solutions of sucrose, albumin and other substances are available in the HANDBOOK OF CHEMISTRY AND PHYSICS Operation of Heathkit Oscilloscope appendix K The material on this page may be found TITLE Biology Teacher's Handbook AUTHOR Joseph J. Schwab PUBLISHER John Wiley and Sons, Inc. 1968 PAGE NO. 546-548 # Preparation of Buffer Solutions | | ml. | m1. | |------------|----------------------------------|-------------| | pН | 0.2 Molar | 0.1 Molar | | • | Na ₂ HPO ₄ | Citric Acid | | 2.2 | 0.20 | 9.80 | | | 0.62 | 9.38 | | 2.4 | 1.09 | 8.91 | | | 1.58 | 8.42 | | 2.8 | 2.05 | 7.95 | | 3.0 | 2.03 | 7.53 | | 3.2 | 2.85 | 7.15 | | 3.4 | 3.22 | 6.78 | | 3.6 | 3.55 | 6.45 | | 3.8 | 3.85 | 6.15 | | 4.0
4.2 | 4.14 | 5.86 | | | 4.41 | 5.59 | | 4.4
4.6 | 4.67 | 5.33 | | 4.8 | 4.07 | 5.07 | | 5.0 | 5.15 | 4.85 | | 5.2 | 5.36 | 4.64 | | 5.4 | 5.58 | 4.42 | | 5.6 | 5.80 | 4.20 | | 5.8 | 6.05 | 3.95 | | 6.0 | 6.31 | 3.69 | | 6.2 | 6.61 | 3.39 | | 6.4 | 6.92 | 3.08 | | 6.6 | 7.27 | 2.73 | | 6.8 | 7.72 | 2.28 | | 7.0 | 8.24 | 1.76 | | 7.2 | 8.69 | 1.31 | | 7.4 | 9.08 | 0.92 | | 7.6 | 9.37 | 0.63 | | 7.8 | 9.57 | 0.43 | | 8.0 | 9.72 | 0.28 | #### PROCEDURES FOR OBTAINING TITRATION CURVES (from an article by Robert Cullen and Paul Malcskey, William Allen High School Allentown, Pa.) #### TITRATION CURVES: Data collected using a pll meter can be used to plot titration curves. These curves can be used to illustrate equivalence points, end points, and selection of indicators for manual titrations. Titrations can also be performed using a pll meter in lieu of an indicator. For the collection of pll data of a sodium hydroxide-hydrochloric acid system titration, you need the following apparatus: nll meter with glass and calomel electrodes; magnetic or overhead stirrer; 50 ml buret (an offset delivery tip is convenient, but not necessary.) Reagents: 0.10M sodium hydroxide solution (if stoichiometric calculations are desired, this solution should be standardized, using potassium phthalate); 0.10M hydrochloric acid; and buffer solution, pH = 7.00. # PROCEDURE: Standardize the pH meter with a small amount of pH = 7.00 buffer solution, according to directions given with the instrument. Using a pipet, transfer exactly 100 ml of 0.10M HCl solution to a 400 ml beaker. Insert the electrodes in the solution so that there is no danger of contact with the stirrer or beaker. Rinse and fill a 50 ml buret with 0.10M NaOH solution. Adjust the meniscus so that it is at or below the zero mark on the buret. To facilitate calculations, it is convenient to add the titrant in whole number increments. Record and read the buret and pl! readings. Add 10.0 ml increments, wait about 20 seconds for pH to become constant, then read and record the buret and pH readings. At 90 ml, add 1.0 increments. At 98 ml, add 0.5 ml increments, and at 99 ml add 0.1 ml increments. The increments of NaOH to be added may be increased as the titration progresses farther beyond 100 ml. Continue to add NaOH until the pH is approximately 12 and remains relatively constant. Plot pH on the vertical axis versus volume of NaOH on the horizontal axis, and draw a smooth curve through the experimental points. (See Fig. 1) Figure 1. 351 The equivalence point is the point of greatest range of change of pll with addition of a reagent. As shown in Fig. 1, the equivalence point of the NaOH-HCl system will occur at about nH 7. Since the equivalence point corresponds to the inflection point of the graph (the point where the line curvature changes from concave up to concave down, or vice versa), it may be approximated visually. NOTE: If stoichiometric relationships are desired, the concentration of the HCl solution may be calculated by equation: Since $N = \frac{\#eq.}{\#liters}$, then N_{acid} - V_{acid} = N_{base} · V_{base} The end point is designated as that point in a titration where an indicator undergoes a visible color change. For stoichiometric use, the end point should coincide with the equivalence point. This relationship can be insured by the proper selection of indicators, as follows: When the pH range over which an indicator undergoes its color change coincides with a portion of the flat vertical section of the titration curve, it will be a suitable indicator for the titration. To illustrate, the approximate pH ranges of color change of some indicators have been indicated on Fig. 1. Thus it can be seen that phenolphthalein, bromothymol blue, or methyl red would be a suitable indicator. Thymol blue would not be suitable for the NaOH-HCl system. By conventional methods, a chemical indicator is used in a neutralization titration, and its change of color marks an end noint. This should coincide with the equivalence point. Since the latter point can be determined from a titration curve, a titration may be performed (and the corresponding stoichiometric relationships determined) using a pH meter in lieu of an indicator. #### DOUBLE INDICATOR TITRATIONS: (See Double indicator titrations and selection of indicators can be illustrated with the sodium carbonate-hydrochloric acid system. 1.0 gr of Na $_2$ CO $_3$ in 100 ml of solution titrated with 0.10 HCl illustrates the two-equivalent point curve. Figure 2. PH B PHENOL PHTHALEIN EQUIVALENCE POINT A METHYL ORANGE O 4 8 12 16 20 24 28 32 36 40 MI OF 0.10 M HCI Phenolphthalein would be a good indicator for the first end point and methyl orange would work well for the second end noint. Phosphoric acid titrated with NaOII would also illustrate a polyprotic system (See Fig. 3). # TABLE OF CONJUGATE ACID-BASE PAIRS INCLUDING ACID IONIZATION CONSTANTS | CONJUGATE | ACID | CON | JUGATE BASE | KAcid | |------------------------------|---------------------------------------|--------------------------------------|---|---| | NAME | FORMULA | FORMULA | NAME | | | perchloric acid | HC10 ₄ | C10, | perchlorate ion | large (K _A 1) | | sulfuric acid | H ₂ SO ₄ | HSO ₄ | hydrogen sulfate ion | 111 | | hydrogen chloride | HC1 | C1 · | chloride ion | ** | | nitric acid | HNO ₃ | NO 3 | nitrate ion | E '' | | hydronium ion | 1130+ | H ₂ 0 | water | STRENGTH
1
5.9 x 10 ⁻² | | oxalic acid | нооссоон | H00CC00 | oxalate ion | 5.9×10^{-2} | | sulfurous acid | 11 ₂ S0 ₃ | IISO ₃ | bisulfite ion | $\frac{3}{2}$ 1.7 x 10^{-2} | | hydrogen sulfate ion | HSO ₄ | so ₄ = | sulfate ion | ا چ 1.2 x 10 ⁻² | | phosphoric acid | 11 ₃ PO ₄ | 112PO4 | sulfate ion dihydrogen phosphate ion fluoride ion | 7.5 x 10 ⁻³ | | hydrogen fluoride | HF | F ⁻ | fluoride ion | $\frac{5}{2}$ 6.7 x 10^{-4} | | nitrous acid | IINO ₂ | NO ₂ | nitrous ion | 5.1×10^{-4} | | acetic acid | CH ₃ COOH | сн ³ соо ₋ | acetate ion | 1.8×10^{-5} | | hexaaquoaluminium
III ion | A1(H ₂ 0) ₆ ++1 | AL(H ₂ O) ₅ OH | ++
hydroxyopentaaquaa
III ion | luminium | | carbonic acid | H ₂ CO ₃ | HCO3 | bicarbonate ion | 4.3×10^{-7} | | hydrogen sulfide | H ₂ S | HS ⁻ | hydrosulfide ion | 1.0×10^{-7} | | dihydrogenphosphate
ion | H ₂ PO ₄ | HPO ₄ = | biphosphate ion | 6.3×10^{-8} | | bisulfite ion | HSO ₃ | so ₃ = | sulfite ion | 6.2×10^{-8} | | ammonium ion | NH ₄ + | NH ₃ | ammonia | 5.7×10^{-10} | | hydrogen cyanide | IICN | CN ² | cyanide ion | | | bicarbonate ion | HCO ₃ | co_= | carbonate ion | $\sqrt{5.6} \times 10^{-11}$ | | biphosphate ion | HPO4 | PO ₄ ≡ | phosphate ion | 4.4×10^{-13} | | pheno1 | C ₆ H ₅ OH | C ₆ H ₅ 0 | phenoxide ion | | | hydrosulfide ion | HS ⁻ | s ⁼ | sulfide ion | 1.3×10^{-13} | DECREASING ACID STRENGIH | water | H ₂ 0 | OH_ | hydroxide ion | | 1.0×10^{-14} | |---------------|----------------------------------|---------------------------------|-----------------|-------------|-----------------------| | ethyl alcohol | С ₂ Н ₅ ОН | C ₂ H ₅ 0 | ethoxide ion | | KA KH2O | | ammonia | NH ₃ | NH ₂ | amide ion | TH. | " | | methylamine | CH ₃ NH ₂ | CH ₃ NH | methylamide ion | STRENGTH | ** | | hydrogen | 112 | ff ⁻ | hydride ion | | 11 | | methane | CH ₄ | CH ₃ | methide ion | BASE | •1 | | | · | | | NCREAS I NG | | | | | | | CREA | | | | | | | ž | | # APPENDIX O # HEATS OF COMBUSTION OF SOME # COMMON ORGANIC COMPOUNDS IN CALORIES PER MOLE | Stearic Acid | 2,711,000 | |---------------|-----------| | Sucrose | 1,349,000 | | Glucose | 673,000 | | Ethyl Alcohol | 327,000 | | Lactic Acid | 326,000 | | Acetaldehyde | 279,000 | | Pyruvic Acid | 279,000 | APPENDIX P # PHYSICAL QUANTITIES AND UNITS | Pnysical
Quantity | Symbol | Definition | F. P. S. | C. G. S. | M. K. S. | |----------------------|----------------
--|--|-----------------------------|----------------------------| | Length | d, h
l,s, | undefined | foot | centimeter | meter | | Mass | m | undefined | slug | gram | kilogram | | Time | t | undefined | second | second | second | | Temperature | Т | undefined | o ^E | °C | °C | | Mag. Pole Strength | m | undefined | | unit pole | weber | | Electric Charge | q, Q | undefined | | | coulomb | | Area | ٨ | A= 1 ² | foot ² | centimeter ² | meter ² | | Volume | ν | $V = 1^3$ | foot ³ | centimeter ³ | meter ³ | | Force | F |) ⁻ = ma | $\frac{\text{slug-ft}}{\text{sec}^2} = 1b$ | $\frac{g-cm}{sec^2} = dyne$ | $\frac{kg-m}{sec^2} = new$ | | Work | W W | W = Fd | ft-1b | dyne-cm = erg | newton-mete
joule | | Energy | E | E = W
stored
work | ft-1b | dyne-cm = erg | newton-mete
joule | | Power | P | $P = \frac{W}{t}$ | $550 \frac{\text{ft-1b}}{\text{sec}} = \frac{1}{1} \text{ horsepower}$ | erg
sec | joule = wat | | Mag. Field Streng | th. H | $H = \frac{F}{m}$ | | Oerstead | weher/meter | | Velocity | V | V = 1/t | foot/sec | cm/sec | meter/sec | | Acceleration | a | $a=\frac{V}{t}=\frac{L}{t}2$ | foot/sec ² | cm/sec ² | meter/sec ² | | Weight Density | D _w | $D_{\mathbf{w}} = \frac{\mathbf{w}}{\mathbf{V}}$ | lb/ft ³ | dyne/cm ³ | newton/mete | | Mass Density | D _m | $D_{m} = \frac{m}{V}$ | slug/ft ³ | gram/cm ³ | Kg/ meter ³ | | Pressure | P | $P = \frac{F}{\Lambda}$ | lb/ft ² | dynes/cm ² | newtons/met | | Torque | Т | T = Fd | lb-ft | dyne-cm | newton-mete | | Impulse | i | i = Ft | lb-sec | dyne-sec | newton-sec | | Momentum | p,M | p = mv | slug-ft/ sec | g-cm/sec | kg-m/sec | | | | | | | | | Physical
Quantity | Symbol | Definition | F. P. S. | c. g. s. | M. K. S. | |--|--------------------|---|------------|------------|--| | Frequency Potential Difference Amperage Resistance Electric Field | f
V
I,i
R | $f = \frac{no}{t}$ $V = \frac{W}{q}$ $I = \frac{q}{t}$ $R = \frac{V}{I}$ $E = \frac{F}{q}$ | number/sec | number/sec | numher/sec volt ampere ohms volt/meter | | Strength | | | | | | | | | | | | | | | | And a feet of the | | | | | | | | | | | | | | | | · | | | C. | | | 357 | | | APPENDIX R # Length (continued) 1 mile $= 1.609 \times 10^3$ meters 1.609 kilometers 1 parsec = 3.0837×10^{16} meters #### Magnetism 1 gauss = 1.00×10^{-4} tesla $1.00 \times 10^{-4} \, \text{weber/meter}^2$ 1 maxwell = 1.00×10^{-8} weber (Wb) 1 unit pole = 1.257×10^{-7} weber 1 weber = 1.00×10^8 maxwell #### Mass 1 kilogram = 6.852×10^{-2} slug 1 metric ton $= 1.00 \times 10^3$ kilograms 1 slug = 1.4594×10^1 kilogram (1 slug weighs 32.17 pounds) 1 unified atomic = 1.660×10^{-27} kilogram mass unit Mass-Energy 1 joule = 1.113×10^{-27} kilogram $6.705 \times 10^{9} \,\mathrm{u}$ 1 kilogram = $6.0225 \times 10^{26} \,\mathrm{u}$ 8.987×10^{16} joules 1 unified atomic = 1.492×10^{-10} joule mass unit #### **Power** 1 horsepower = 550 foot·lbf/second 7.457×10^2 watts 7.457×10^{-1} kilowatt 1.782×10^{-1} kilocalorie/ second 1 kilowatt = 3.413×10^3 Btu/hour 1.341 horsepower # Power (continued) 1 watt = 1 joule/second 1×10^7 ergs/second #### **Pressure** 1 atmosphere = 1.01325×10^5 newtons/ meter? 760 mm Hg (0°C) 760 torrs 1 millimeter of = 1.333×10^2 newtons/ mercury (0°C) meter² $1.934 \times 10^{-2} \text{ psi}$ (lbf/inch2) 1 torr 1 torr = 1 mm Hg (0°C) #### Time 1 day (ephemeris) = 1,440 minutes 8.64×10^4 seconds 1 year = 365.242 days 8.766×10^{3} hours 5.259×10^{5} minutes $3.1536 \times 10^7 \, \text{seconds}$ #### Volume 1 foot³ = 2.8317×10^{-2} meter³ 1 gallon (U.S. liquid) = 3.7854 liter $3.7854 \times 10^{-3} \, \text{meter}^3$ 1 liter = 1.00×10^{-3} meter³ 1×10^3 centimeters³ 1×10^3 milliliters 1.0567 quarts (U.S. liquid) 1 quart (U.S. liquid) = 9.463×10^{-1} liter # PHYSICAL CONSTANTS | acceleration due to gravity (standard) gn | .9.80665 m/s² | |---|--| | alpha particle mass | $6.6442 \times 10^{-27} \text{ kg}$ | | atmospheric pressure (normal), atm | $1.01325 \times 10^5 \mathrm{N/m^2}$ | | Avogadro constant, N _A | 6.02252 × 10 ²³ /mole | | Boltzmann constant, k | 1.38054 × 10 ²³ J/°K | | calorie, thermochemical, cal _{th} | 4.1840 J | | calorie, International Steam Table, cal _{IT} | 4.1868 J | | Coulomb law constant, k | .2.3063 × 10 · ²⁸ N·m²/(elem.ch.)²
8.9£76 × 10 ⁹ N·m²/C² | | electron rest mass, m _e | 9.1091×10^{-31} kg 5.48597×10^{-4} u | | elementary charge, e. | $1.60210 \times 10^{-19} \mathrm{C}$ | | Faraday constant, F | $9.64870 imes 10^4$ C/equivalent 2.3061 $ imes 10^4$ cal/volt/equivalent | | gas constant, universal, R | 0.082051 atm I/mole/°K
8.314 × 10 ⁷ ergs/mole/°K
8.3143 J/mole/°K
1.987 cal/mole/°K | | gas, normal volume, V_o (for perfect gas) | $2.24136 \times 10^{-2} \text{ m}^3/\text{mole}$ $2.24136 \times 10^1 \text{ l/mole}$ | | gravitational constant, G | $1.6.670 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
$6.670 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$ | | inch, in | 2.54×10^{-2} m | | liter, I | $1.00 \times 10^{-3} \mathrm{m}^3$ | | molal boiling-point elevation constant for water | 0.51°C | | molal freezing-point depression constant for water. | 1.86°C | | neutron rest mass, m _n | 1.67482 × 10 ²⁷ kg
1.0086654 u | | Planck constant, h | $6.6256 \times 10^{-34} \text{ J/s}$ and 6.6256×10^{-27} | | proton rest mass, m_p | $1.67252 \times 10^{-27} \text{ kg}$ erg-sec 1.00727663 u | | ratio of proton mass to electron mass | 1836 | | Rydberg constant, R | 1.0973731 \times 10 7 /m | | speed of light (in vacuum), c | | | speed of sound (in air at 20°C). | 3.44 \times 10 ² m/s | | unified atomic mass unit, u | $1.660 \times 10^{-27} \mathrm{kg}$ | | water, ice point ! ! | .273.15°K
0.00°C | | water, triple point | 273.16°K
0.01°C | # PERIODIC CHART # SHELLS PRINCIPAL X-RAY QUANTUM NOTATION 1 K 2 L 3 M 4 N 5 O 6 P NOTE: A value given in parentheses denotes the mass number of the isotope of the iongest known half-life, or of the best known one. The orackets are meant to indicate only the general order of subshell filling. The filling of subshells is not completely regular, as is emphasized by the use of red ink to denote shells which have electron populations different from the preceding element. In the case of He, subshell population is not by itself indicative of chemical behavior, and that element is therefore included in the mert gas group, even though helium possesses no p-electrons. Open circles represent valence states of minor importance, or those ERIC 100 | | p | | | |--|---|-------------------|--| | | | SES | | | HEAVY METALS | | 2
He | | | | 2 5 2 6 2 7 2 8 2 9 2 8 B C N O F | 10
Ne | | | \ | 3 Al 4 Si 5 P 6 S 7 Cl 6 | 18
Ar | | | 2 26 2 27 2 28 28 28 14 Fe 15 Co 16 Ni 18 Cu 55,9337 58,71 58,71 63,54 | $\begin{bmatrix} 18 \\ 2 \end{bmatrix}$ Zn $\begin{bmatrix} 18 \\ 3
\end{bmatrix}$ Ga $\begin{bmatrix} 18 \\ 4 \end{bmatrix}$ Ge $\begin{bmatrix} 18 \\ 5 \end{bmatrix}$ As $\begin{bmatrix} 18 \\ 6 \end{bmatrix}$ Se $\begin{bmatrix} 18 \\ 7 \end{bmatrix}$ Br $\begin{bmatrix} 18 \\ 8 \end{bmatrix}$ | 36
Kr | | | 2 44 2 45 2 46 2 47 18 Ru 16 Rh 18 Pd 18 Ag | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 54
Xe | | | 2 76 2 77 2 78 2 79 18 32 79 18 32 Pt 32 Au 17 19 19 19 19 19 19 19 19 19 19 19 19 19 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 86
Rn | | | 57 58 59 60 61 62
La Ce Fr Nd R Pm 8 Sm 7 144 74 7 1147 7 150 35 | 63 64 65 66 67 68 69 70 8 18 18 18 18 18 18 18 | 71
Lu | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 103
Lw
25** | | | , unobtainable in presence of water. For transuranian elements, all valences reported are listed | | | | ERIC ine)